These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
338 related articles for article (PubMed ID: 18971455)
1. Double dissociation of the effects of medial and orbital prefrontal cortical lesions on attentional and affective shifts in mice. Bissonette GB; Martins GJ; Franz TM; Harper ES; Schoenbaum G; Powell EM J Neurosci; 2008 Oct; 28(44):11124-30. PubMed ID: 18971455 [TBL] [Abstract][Full Text] [Related]
2. Primate analogue of the Wisconsin Card Sorting Test: effects of excitotoxic lesions of the prefrontal cortex in the marmoset. Dias R; Robbins TW; Roberts AC Behav Neurosci; 1996 Oct; 110(5):872-86. PubMed ID: 8918991 [TBL] [Abstract][Full Text] [Related]
3. Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat. McAlonan K; Brown VJ Behav Brain Res; 2003 Nov; 146(1-2):97-103. PubMed ID: 14643463 [TBL] [Abstract][Full Text] [Related]
4. Impaired executive function following ischemic stroke in the rat medial prefrontal cortex. Cordova CA; Jackson D; Langdon KD; Hewlett KA; Corbett D Behav Brain Res; 2014 Jan; 258():106-11. PubMed ID: 24144544 [TBL] [Abstract][Full Text] [Related]
5. Noradrenergic modulation of cognitive function in rat medial prefrontal cortex as measured by attentional set shifting capability. Lapiz MD; Morilak DA Neuroscience; 2006 Feb; 137(3):1039-49. PubMed ID: 16298081 [TBL] [Abstract][Full Text] [Related]
6. Lesions of the orbital prefrontal cortex impair the formation of attentional set in rats. Chase EA; Tait DS; Brown VJ Eur J Neurosci; 2012 Aug; 36(3):2368-75. PubMed ID: 22672207 [TBL] [Abstract][Full Text] [Related]
7. Stimulus specific deficit on visual reversal learning after lesions of medial prefrontal cortex in the mouse. Brigman JL; Rothblat LA Behav Brain Res; 2008 Mar; 187(2):405-10. PubMed ID: 18022704 [TBL] [Abstract][Full Text] [Related]
8. Dissociable forms of inhibitory control within prefrontal cortex with an analog of the Wisconsin Card Sort Test: restriction to novel situations and independence from "on-line" processing. Dias R; Robbins TW; Roberts AC J Neurosci; 1997 Dec; 17(23):9285-97. PubMed ID: 9364074 [TBL] [Abstract][Full Text] [Related]
9. Contrasting cortical and subcortical activations produced by attentional-set shifting and reversal learning in humans. Rogers RD; Andrews TC; Grasby PM; Brooks DJ; Robbins TW J Cogn Neurosci; 2000 Jan; 12(1):142-62. PubMed ID: 10769312 [TBL] [Abstract][Full Text] [Related]
10. Attentional Set-Shifting Across Species. Brown VJ; Tait DS Curr Top Behav Neurosci; 2016; 28():363-95. PubMed ID: 26873018 [TBL] [Abstract][Full Text] [Related]
11. Electrolytic lesions of the medial prefrontal cortex in rats disrupt performance on an analog of the Wisconsin Card Sorting Test, but do not disrupt latent inhibition: implications for animal models of schizophrenia. Joel D; Weiner I; Feldon J Behav Brain Res; 1997 May; 85(2):187-201. PubMed ID: 9105575 [TBL] [Abstract][Full Text] [Related]
12. Double dissociation of attentional resources: prefrontal versus cingulate cortices. Ng CW; Noblejas MI; Rodefer JS; Smith CB; Poremba A J Neurosci; 2007 Nov; 27(45):12123-31. PubMed ID: 17989278 [TBL] [Abstract][Full Text] [Related]
13. An empirical test of Woody and Bowers's dissociated-control theory of hypnosis. Jamieson GA; Sheehan PW Int J Clin Exp Hypn; 2004 Jul; 52(3):232-49. PubMed ID: 15370356 [TBL] [Abstract][Full Text] [Related]
15. 6-Hydroxydopamine lesions of the prefrontal cortex in monkeys enhance performance on an analog of the Wisconsin Card Sort Test: possible interactions with subcortical dopamine. Roberts AC; De Salvia MA; Wilkinson LS; Collins P; Muir JL; Everitt BJ; Robbins TW J Neurosci; 1994 May; 14(5 Pt 1):2531-44. PubMed ID: 8182426 [TBL] [Abstract][Full Text] [Related]
16. Reward-dependent learning in neuronal networks for planning and decision making. Dehaene S; Changeux JP Prog Brain Res; 2000; 126():217-29. PubMed ID: 11105649 [TBL] [Abstract][Full Text] [Related]
17. Impairments in set-shifting but not reversal learning in the neonatal ventral hippocampal lesion model of schizophrenia: further evidence for medial prefrontal deficits. Placek K; Dippel WC; Jones S; Brady AM Behav Brain Res; 2013 Nov; 256():405-13. PubMed ID: 23994544 [TBL] [Abstract][Full Text] [Related]
18. Functional dissociations between subregions of the medial prefrontal cortex on the rodent touchscreen continuous performance test (rCPT) of attention. Fisher BM; Saksida LM; Robbins TW; Bussey TJ Behav Neurosci; 2020 Feb; 134(1):1-14. PubMed ID: 31829644 [TBL] [Abstract][Full Text] [Related]
19. The ultimate intra-/extra-dimensional attentional set-shifting task for mice. Scheggia D; Bebensee A; Weinberger DR; Papaleo F Biol Psychiatry; 2014 Apr; 75(8):660-70. PubMed ID: 23810621 [TBL] [Abstract][Full Text] [Related]
20. Medial frontal cortex mediates perceptual attentional set shifting in the rat. Birrell JM; Brown VJ J Neurosci; 2000 Jun; 20(11):4320-4. PubMed ID: 10818167 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]