These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 18971462)

  • 21. Neural implementation of response selection in humans as revealed by localized effects of stimulus-response compatibility on brain activation.
    Schumacher EH; D'Esposito M
    Hum Brain Mapp; 2002 Nov; 17(3):193-201. PubMed ID: 12391572
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neural correlates of a reversal learning task with an affectively neutral baseline: an event-related fMRI study.
    Remijnse PL; Nielen MM; Uylings HB; Veltman DJ
    Neuroimage; 2005 Jun; 26(2):609-18. PubMed ID: 15907318
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cerebral activation related to implicit sequence learning in a Double Serial Reaction Time task.
    van der Graaf FH; Maguire RP; Leenders KL; de Jong BM
    Brain Res; 2006 Apr; 1081(1):179-90. PubMed ID: 16533501
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Parsing decision making processes in prefrontal cortex: response inhibition, overcoming learned avoidance, and reversal learning.
    Greening SG; Finger EC; Mitchell DG
    Neuroimage; 2011 Jan; 54(2):1432-41. PubMed ID: 20850555
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neural processes associated with antisaccade task performance investigated with event-related FMRI.
    Ford KA; Goltz HC; Brown MR; Everling S
    J Neurophysiol; 2005 Jul; 94(1):429-40. PubMed ID: 15728770
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Large-scale coupling dynamics of instructed reversal learning.
    Mohr H; Wolfensteller U; Ruge H
    Neuroimage; 2018 Feb; 167():237-246. PubMed ID: 29175610
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The neural network of saccadic foreknowledge.
    Bär S; Hauf M; Barton J; Abegg M
    Exp Brain Res; 2016 Feb; 234(2):409-18. PubMed ID: 26497988
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dissociable mechanisms of attentional control within the human prefrontal cortex.
    Nagahama Y; Okada T; Katsumi Y; Hayashi T; Yamauchi H; Oyanagi C; Konishi J; Fukuyama H; Shibasaki H
    Cereb Cortex; 2001 Jan; 11(1):85-92. PubMed ID: 11113037
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neural dynamics of error processing in medial frontal cortex.
    Mars RB; Coles MG; Grol MJ; Holroyd CB; Nieuwenhuis S; Hulstijn W; Toni I
    Neuroimage; 2005 Dec; 28(4):1007-13. PubMed ID: 16055352
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The interplay of stimulus modality and response latency in neural network organization for simple working memory tasks.
    Protzner AB; McIntosh AR
    J Neurosci; 2007 Mar; 27(12):3187-97. PubMed ID: 17376980
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Category-specific organization of prefrontal response-facilitation during priming.
    Bunzeck N; Schütze H; Düzel E
    Neuropsychologia; 2006; 44(10):1765-76. PubMed ID: 16701731
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conversation effects on neural mechanisms underlying reaction time to visual events while viewing a driving scene: fMRI analysis and asynchrony model.
    Hsieh L; Young RA; Bowyer SM; Moran JE; Genik RJ; Green CC; Chiang YR; Yu YJ; Liao CC; Seaman S
    Brain Res; 2009 Jan; 1251():162-75. PubMed ID: 18952070
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The neural bases of momentary lapses in attention.
    Weissman DH; Roberts KC; Visscher KM; Woldorff MG
    Nat Neurosci; 2006 Jul; 9(7):971-8. PubMed ID: 16767087
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distinct contributions of lateral orbito-frontal cortex, striatum, and fronto-parietal network regions for rule encoding and control of memory-based implementation during instructed reversal learning.
    Ruge H; Wolfensteller U
    Neuroimage; 2016 Jan; 125():1-12. PubMed ID: 26471057
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The functional neuroanatomy of classic delayed response tasks in humans and the limitations of cross-method convergence in prefrontal function.
    Turner GR; Levine B
    Neuroscience; 2006 Apr; 139(1):327-37. PubMed ID: 16324791
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unconscious activation of the prefrontal no-go network.
    van Gaal S; Ridderinkhof KR; Scholte HS; Lamme VA
    J Neurosci; 2010 Mar; 30(11):4143-50. PubMed ID: 20237284
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adapting to dynamic stimulus-response values: differential contributions of inferior frontal, dorsomedial, and dorsolateral regions of prefrontal cortex to decision making.
    Mitchell DG; Luo Q; Avny SB; Kasprzycki T; Gupta K; Chen G; Finger EC; Blair RJ
    J Neurosci; 2009 Sep; 29(35):10827-34. PubMed ID: 19726640
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The neural effect of stimulus-response modality compatibility on dual-task performance: an fMRI study.
    Stelzel C; Schumacher EH; Schubert T; D'Esposito M
    Psychol Res; 2006 Nov; 70(6):514-25. PubMed ID: 16175414
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ventrolateral prefrontal cortex activity associated with individual differences in arbitrary delayed paired-association learning performance: a functional magnetic resonance imaging study.
    Tanabe HC; Sadato N
    Neuroscience; 2009 May; 160(3):688-97. PubMed ID: 19285546
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neural correlates of stimulus response and stimulus outcome shifting in healthy participants and MS patients.
    Hildebrandt H; Fink F; Eling P; Stuke H; Klein J; Lentschig M; Kastrup A; Thiel C; Breckel T
    Brain Cogn; 2013 Feb; 81(1):57-66. PubMed ID: 23174429
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.