These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 18972025)

  • 1. Investigation of the adsorption behaviour of acetone at the surface of ice. A grand canonical Monte Carlo simulation study.
    Hantal G; Jedlovszky P; Hoang PN; Picaud S
    Phys Chem Chem Phys; 2008 Nov; 10(42):6369-80. PubMed ID: 18972025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the adsorption isotherm of methanol on the surface of ice. An experimental and grand canonical Monte Carlo simulation study.
    Jedlovszky P; Pártay L; Hoang PN; Picaud S; von Hessberg P; Crowley JN
    J Am Chem Soc; 2006 Nov; 128(47):15300-9. PubMed ID: 17117883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of benzaldehyde at the surface of ice, studied by experimental method and computer simulation.
    Petitjean M; Hantal G; Chauvin C; Mirabel P; Le Calvé S; Hoang PN; Picaud S; Jedlovszky P
    Langmuir; 2010 Jun; 26(12):9596-606. PubMed ID: 20329716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of acetaldehyde on ice as seen from computer simulation and infrared spectroscopy measurements.
    Darvas M; Lasne J; Laffon C; Parent P; Picaud S; Jedlovszky P
    Langmuir; 2012 Mar; 28(9):4198-207. PubMed ID: 22320190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of 1-octanol at the free water surface as studied by Monte Carlo simulation.
    Jedlovszky P; Varga I; Gilányi T
    J Chem Phys; 2004 Jun; 120(24):11839-51. PubMed ID: 15268218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption and structure of water on kaolinite surfaces: possible insight into ice nucleation from grand canonical monte carlo calculations.
    Croteau T; Bertram AK; Patey GN
    J Phys Chem A; 2008 Oct; 112(43):10708-12. PubMed ID: 18785690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grand canonical monte carlo simulation study of water adsorption in silicalite at 300 K.
    Puibasset J; Pellenq RJ
    J Phys Chem B; 2008 May; 112(20):6390-7. PubMed ID: 18433164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grand canonical Monte Carlo simulation of the adsorption isotherms of water molecules on model soot particles.
    Moulin F; Picaud S; Hoang PN; Jedlovszky P
    J Chem Phys; 2007 Oct; 127(16):164719. PubMed ID: 17979383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamics of hydrogen adsorption in slit-like carbon nanopores at 77 K. Classical versus path-integral Monte Carlo simulations.
    Kowalczyk P; Gauden PA; Terzyk AP; Bhatia SK
    Langmuir; 2007 Mar; 23(7):3666-72. PubMed ID: 17323981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grand canonical Monte Carlo simulation of argon adsorption at the surface of silica nanopores: effect of pore size, pore morphology, and surface roughness.
    Coasne B; Pellenq RJ
    J Chem Phys; 2004 Feb; 120(6):2913-22. PubMed ID: 15268439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water in contact with magnetite nanoparticles, as seen from experiments and computer simulations.
    Tombácz E; Hajdú A; Illés E; László K; Garberoglio G; Jedlovszky P
    Langmuir; 2009 Nov; 25(22):13007-14. PubMed ID: 19702278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boltzmann bias grand canonical Monte Carlo.
    Garberoglio G
    J Chem Phys; 2008 Apr; 128(13):134109. PubMed ID: 18397055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quasi one-dimensional nanopores in single-wall carbon nanohorn colloids using grand canonical Monte Carlo simulation aided adsorption technique.
    Ohba T; Kanoh H; Yudasaka M; Iijima S; Kaneko K
    J Phys Chem B; 2005 May; 109(18):8659-62. PubMed ID: 16852025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of water adsorption on kaolinite under atmospheric conditions.
    Croteau T; Bertram AK; Patey GN
    J Phys Chem A; 2009 Jul; 113(27):7826-33. PubMed ID: 19514713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetone adsorption on ice surfaces in the temperature range T = 190-220 K: evidence for aging effects due to crystallographic changes of the adsorption sites.
    Behr P; Terziyski A; Zellner R
    J Phys Chem A; 2006 Jul; 110(26):8098-107. PubMed ID: 16805496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water adsorption in disordered mesoporous silica (Vycor) at 300 K and 650 K: a Grand Canonical Monte Carlo simulation study of hysteresis.
    Puibasset J; Pellenq RJ
    J Chem Phys; 2005 Mar; 122(9):094704. PubMed ID: 15836159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembly of 1,4-benzenedithiolate/tetrahydrofuran on a gold surface: a Monte Carlo simulation study.
    Zhao X; Leng Y; Cummings PT
    Langmuir; 2006 Apr; 22(9):4116-24. PubMed ID: 16618153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative simulation study of nitrogen and ammonia adsorption on graphitized and nongraphitized carbon blacks.
    Herrera LF; Do DD; Birkett GR
    J Colloid Interface Sci; 2008 Apr; 320(2):415-22. PubMed ID: 18258251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atmospheric pressure coated-wall flow-tube study of acetone adsorption on ice.
    Bartels-Rausch T; Huthwelker T; Gäggeler HW; Ammann M
    J Phys Chem A; 2005 May; 109(20):4531-9. PubMed ID: 16833789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of the nonionic surfactant triethoxy monooctylether C8E3 adsorbed at the free water surface, as seen from surface tension measurements and Monte Carlo simulations.
    Paszternák A; Kiss E; Jedlovszky P
    J Chem Phys; 2005 Mar; 122(12):124704. PubMed ID: 15836406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.