These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 18972029)

  • 1. Formation of FeCl(2)/NaCl-nanoparticles in supercritical water investigated by molecular dynamics simulations: nucleation rates.
    Lümmen N; Kvamme B
    Phys Chem Chem Phys; 2008 Nov; 10(42):6405-16. PubMed ID: 18972029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleation of NaCl nanoparticles in supercritical water: molecular dynamics simulations.
    Nahtigal IG; Zasetsky AY; Svishchev IM
    J Phys Chem B; 2008 Jun; 112(25):7537-43. PubMed ID: 18512978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulations of growth and properties of FeCl2-NaCl-nanoparticles in supercritical water.
    Lümmen N; Kvamme B
    Phys Chem Chem Phys; 2009 Nov; 11(41):9504-13. PubMed ID: 19830335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aggregation of FeCl2 clusters in supercritical water investigated by molecular dynamics simulations.
    Lümmen N; Kvamme B
    J Phys Chem B; 2008 Oct; 112(39):12374-85. PubMed ID: 18781718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of NaCl nucleation in supercritical water investigated by molecular dynamics simulations.
    Lümmen N; Kvamme B
    Phys Chem Chem Phys; 2007 Jul; 9(25):3251-60. PubMed ID: 17579733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tests of the homogeneous nucleation theory with molecular-dynamics simulations. I. Lennard-Jones molecules.
    Tanaka KK; Kawamura K; Tanaka H; Nakazawa K
    J Chem Phys; 2005 May; 122(18):184514. PubMed ID: 15918736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of aging FeCl(2) clusters grown in supercritical water investigated by molecular dynamics simulations.
    Lümmen N; Kvamme B
    J Chem Phys; 2010 Jan; 132(1):014702. PubMed ID: 20078175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The short range anion-H interaction is the driving force for crystal formation of ions in water.
    Alejandre J; Chapela GA; Bresme F; Hansen JP
    J Chem Phys; 2009 May; 130(17):174505. PubMed ID: 19425788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo simulations of critical cluster sizes and nucleation rates of water.
    Merikanto J; Vehkamaki H; Zapadinsky E
    J Chem Phys; 2004 Jul; 121(2):914-24. PubMed ID: 15260623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Equilibrium sizes and formation energies of small and large Lennard-Jones clusters from molecular dynamics: a consistent comparison to Monte Carlo simulations and density functional theories.
    Julin J; Napari I; Merikanto J; Vehkamäki H
    J Chem Phys; 2008 Dec; 129(23):234506. PubMed ID: 19102537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cluster sizes in direct and indirect molecular dynamics simulations of nucleation.
    Napari I; Julin J; Vehkamäki H
    J Chem Phys; 2009 Dec; 131(24):244511. PubMed ID: 20059083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleation rate isotherms of argon from molecular dynamics simulations.
    Wedekind J; Wölk J; Reguera D; Strey R
    J Chem Phys; 2007 Oct; 127(15):154515. PubMed ID: 17949181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation and integration of NaOH into NaCl clusters in supercritical water: a molecular dynamics study on hydrolysis product partitioning.
    Nahtigal IG; Svishchev IM
    J Phys Chem B; 2009 Nov; 113(44):14681-8. PubMed ID: 19824641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulations of nucleation from vapor to solid composed of Lennard-Jones molecules.
    Tanaka KK; Tanaka H; Yamamoto T; Kawamura K
    J Chem Phys; 2011 May; 134(20):204313. PubMed ID: 21639446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics investigation of the various atomic force contributions to the interfacial tension at the supercritical CO2-water interface.
    Zhao L; Lin S; Mendenhall JD; Yuet PK; Blankschtein D
    J Phys Chem B; 2011 May; 115(19):6076-87. PubMed ID: 21517060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homogeneous SPC/E water nucleation in large molecular dynamics simulations.
    Angélil R; Diemand J; Tanaka KK; Tanaka H
    J Chem Phys; 2015 Aug; 143(6):064507. PubMed ID: 26277145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular-dynamics simulation of argon nucleation from supersaturated vapor in the NVE ensemble.
    Kraska T
    J Chem Phys; 2006 Feb; 124(5):054507. PubMed ID: 16468894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyrazine in supercritical xenon: local number density defined by experiment and calculation.
    Hrnjez BJ; Kabarriti A; Dach BI; Buldyrev SV; Asherie N; Natanov GR; Balderman J
    J Phys Chem B; 2008 Dec; 112(48):15431-41. PubMed ID: 18991436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomistic nature of NaCl nucleation at the solid-liquid interface.
    Yang Y; Meng S
    J Chem Phys; 2007 Jan; 126(4):044708. PubMed ID: 17286500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sodium chloride in supercritical water as a function of density: potentials of mean force and an equation for the dissociation constant from 723 to 1073 K and from 0 to 0.9 g/cm(3).
    Liu W; Wood RH; Doren DJ
    J Phys Chem B; 2008 Jun; 112(24):7289-97. PubMed ID: 18491938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.