These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 18972473)

  • 41. The synthesis of sterically hindered amines by a direct reductive amination of ketones.
    Yagafarov NZ; Kolesnikov PN; Usanov DL; Novikov VV; Nelyubina YV; Chusov D
    Chem Commun (Camb); 2016 Jan; 52(7):1397-400. PubMed ID: 26620770
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An efficient single-enzymatic cascade for asymmetric synthesis of chiral amines catalyzed by ω-transaminase.
    Wang B; Land H; Berglund P
    Chem Commun (Camb); 2013 Jan; 49(2):161-3. PubMed ID: 23169388
    [TBL] [Abstract][Full Text] [Related]  

  • 43. H
    Zor C; Reeve HA; Quinson J; Thompson LA; Lonsdale TH; Dillon F; Grobert N; Vincent KA
    Chem Commun (Camb); 2017 Aug; 53(71):9839-9841. PubMed ID: 28795176
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A facile one-pot process for the formation of hindered tertiary amines.
    Wang Z; Pei D; Zhang Y; Wang C; Sun J
    Molecules; 2012 May; 17(5):5151-63. PubMed ID: 22555302
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Asymmetric reductive amination.
    Wang C; Xiao J
    Top Curr Chem; 2014; 343():261-82. PubMed ID: 24158548
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biocatalytic Synthesis of Chiral N-Functionalized Amino Acids.
    Hyslop JF; Lovelock SL; Sutton PW; Brown KK; Watson AJB; Roiban GD
    Angew Chem Int Ed Engl; 2018 Oct; 57(42):13821-13824. PubMed ID: 30138551
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Process considerations for the asymmetric synthesis of chiral amines using transaminases.
    Tufvesson P; Lima-Ramos J; Jensen JS; Al-Haque N; Neto W; Woodley JM
    Biotechnol Bioeng; 2011 Jul; 108(7):1479-93. PubMed ID: 21455931
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Building addressable libraries: spatially isolated, chip-based reductive amination reactions.
    Tesfu E; Maurer K; Moeller KD
    J Am Chem Soc; 2006 Jan; 128(1):70-1. PubMed ID: 16390126
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Artificial multi-enzyme networks for the asymmetric amination of sec-alcohols.
    Tauber K; Fuchs M; Sattler JH; Pitzer J; Pressnitz D; Koszelewski D; Faber K; Pfeffer J; Haas T; Kroutil W
    Chemistry; 2013 Mar; 19(12):4030-5. PubMed ID: 23341101
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A versatile catalyst for reductive amination by transfer hydrogenation.
    Wang C; Pettman A; Basca J; Xiao J
    Angew Chem Int Ed Engl; 2010 Oct; 49(41):7548-52. PubMed ID: 21038452
    [No Abstract]   [Full Text] [Related]  

  • 51. Direct asymmetric reductive amination.
    Steinhuebel D; Sun Y; Matsumura K; Sayo N; Saito T
    J Am Chem Soc; 2009 Aug; 131(32):11316-7. PubMed ID: 19637921
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enantioselective biocatalytic formal α-amination of hexanoic acid to l-norleucine.
    Dennig A; Gandomkar S; Cigan E; Reiter TC; Haas T; Hall M; Faber K
    Org Biomol Chem; 2018 Nov; 16(43):8030-8033. PubMed ID: 30334043
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Asymmetric reductive amination by combined Brønsted acid and transition-metal catalysis.
    Klussmann M
    Angew Chem Int Ed Engl; 2009; 48(39):7124-5. PubMed ID: 19718737
    [No Abstract]   [Full Text] [Related]  

  • 54. Amine-promoted, organocatalytic aziridination of enones.
    Armstrong A; Baxter CA; Lamont SG; Pape AR; Wincewicz R
    Org Lett; 2007 Jan; 9(2):351-3. PubMed ID: 17217302
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development of Continuous Flow Systems to Access Secondary Amines Through Previously Incompatible Biocatalytic Cascades*.
    Mattey AP; Ford GJ; Citoler J; Baldwin C; Marshall JR; Palmer RB; Thompson M; Turner NJ; Cosgrove SC; Flitsch SL
    Angew Chem Int Ed Engl; 2021 Aug; 60(34):18660-18665. PubMed ID: 33856106
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ytterbium acetate promoted asymmetric reductive amination: significantly enhanced stereoselectivity.
    Nugent TC; El-Shazly M; Wakchaure VN
    J Org Chem; 2008 Feb; 73(4):1297-305. PubMed ID: 18198887
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electrolysis promoted reductive amination of electron-deficient aldehydes/ketones: a green route to the racemic clopidogrel.
    Zhang Q; Zhu W; Yao J; Li X; Zhou H
    Org Biomol Chem; 2018 Nov; 16(44):8462-8466. PubMed ID: 30362487
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Organocatalytic asymmetric aziridination of enones.
    Pesciaioli F; De Vincentiis F; Galzerano P; Bencivenni G; Bartoli G; Mazzanti A; Melchiorre P
    Angew Chem Int Ed Engl; 2008; 47(45):8703-6. PubMed ID: 18846523
    [No Abstract]   [Full Text] [Related]  

  • 59. Asymmetric synthesis of acyclic 1,3-amino alcohols by reduction of N-sulfinyl beta-amino ketones. Formal synthesis of (-)-pinidinol and (+)- epipinidinol.
    Davis FA; Gaspari PM; Nolt BM; Xu P
    J Org Chem; 2008 Dec; 73(24):9619-26. PubMed ID: 18986203
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development of an amine dehydrogenase for synthesis of chiral amines.
    Abrahamson MJ; Vázquez-Figueroa E; Woodall NB; Moore JC; Bommarius AS
    Angew Chem Int Ed Engl; 2012 Apr; 51(16):3969-72. PubMed ID: 22396126
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.