These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 18972553)

  • 1. Postmortem changes in the neuroanatomical characteristics of the primate brain: hippocampal formation.
    Lavenex P; Lavenex PB; Bennett JL; Amaral DG
    J Comp Neurol; 2009 Jan; 512(1):27-51. PubMed ID: 18972553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution of neurofilament protein and calcium-binding proteins parvalbumin, calbindin, and calretinin in the canine hippocampus.
    Hof PR; Rosenthal RE; Fiskum G
    J Chem Neuroanat; 1996 Jul; 11(1):1-12. PubMed ID: 8841885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurochemical development of the hippocampal region in the fetal rhesus monkey, III: calbindin-D28K, calretinin and parvalbumin with special mention of cajal-retzius cells and the retrosplenial cortex.
    Berger B; Alvarez C
    J Comp Neurol; 1996 Mar; 366(4):674-99. PubMed ID: 8833116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholinergic innervation of the primate hippocampal formation. I. Distribution of choline acetyltransferase immunoreactivity in the Macaca fascicularis and Macaca mulatta monkeys.
    Alonso JR; Amaral DG
    J Comp Neurol; 1995 May; 355(2):135-70. PubMed ID: 7608341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytoarchitecture, neuronal composition, and entorhinal afferents of the flying fox hippocampus.
    Buhl EH; Dann JF
    Hippocampus; 1991 Apr; 1(2):131-52. PubMed ID: 1727000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of somatostatin immunoreactivity in the human dentate gyrus.
    Amaral DG; Insausti R; Campbell MJ
    J Neurosci; 1988 Sep; 8(9):3306-16. PubMed ID: 2459324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mossy cells and different subpopulations of pyramidal neurons are immunoreactive for cocaine- and amphetamine-regulated transcript peptide in the hippocampal formation of non-human primates and tree shrew (Tupaia belangeri).
    Abrahám H; Czéh B; Fuchs E; Seress L
    Neuroscience; 2005; 136(1):231-40. PubMed ID: 16181735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyramidal neurons are immunoreactive for calbindin D28k in the CA1 subfield of the human hippocampus.
    Seress L; Gulyás AI; Freund TF
    Neurosci Lett; 1992 Apr; 138(2):257-60. PubMed ID: 1376873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative analysis of the distribution of prosomatostatin-derived peptides in human and monkey neocortex.
    Hayes TL; Cameron JL; Fernstrom JD; Lewis DA
    J Comp Neurol; 1991 Jan; 303(4):584-99. PubMed ID: 1672875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The human precentral sulcus: chemoarchitecture of a region corresponding to the frontal eye fields.
    Rosano C; Sweeney JA; Melchitzky DS; Lewis DA
    Brain Res; 2003 May; 972(1-2):16-30. PubMed ID: 12711074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of the calcium-binding proteins calbindin D-28K and parvalbumin in the superior colliculus of adult and neonatal cat and rhesus monkey.
    McHaffie JG; Anstrom KK; Gabriele ML; Stein BE
    Exp Brain Res; 2001 Dec; 141(4):460-70. PubMed ID: 11810140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneity of layer II neurons in human entorhinal cortex.
    Beall MJ; Lewis DA
    J Comp Neurol; 1992 Jul; 321(2):241-66. PubMed ID: 1500542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonphosphorylated neurofilament protein and calbindin immunoreactivity in layer III pyramidal neurons of human neocortex.
    Hayes TL; Lewis DA
    Cereb Cortex; 1992; 2(1):56-67. PubMed ID: 1633408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonphosphorylated high-molecular-weight neurofilament expression suggests early maturation of the monkey subiculum.
    Lavenex P; Lavenex PB; Amaral DG
    Hippocampus; 2004; 14(7):797-801. PubMed ID: 15382249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetylcholinesterase fiber staining in the human hippocampus and parahippocampal gyrus.
    Green RC; Mesulam MM
    J Comp Neurol; 1988 Jul; 273(4):488-99. PubMed ID: 3209735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parvalbumin- and calbindin D28k-immunoreactive neurons in the hippocampal formation of the macaque monkey.
    Seress L; Gulyás AI; Freund TF
    J Comp Neurol; 1991 Nov; 313(1):162-77. PubMed ID: 1761752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of calbindin D28k immunoreactive cells and fibers in the monkey hippocampus, subicular complex and entorhinal cortex. A light and electron microscopic study.
    Seress L; Léránth C; Frotscher M
    J Hirnforsch; 1994; 35(4):473-86. PubMed ID: 7884210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of parvalbumin-immunoreactive cells and fibers in the monkey temporal lobe: the hippocampal formation.
    Pitkänen A; Amaral DG
    J Comp Neurol; 1993 May; 331(1):37-74. PubMed ID: 8320348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calretinin immunoreactive structures in the human hippocampal formation.
    Nitsch R; Ohm TG
    J Comp Neurol; 1995 Sep; 360(3):475-87. PubMed ID: 8543653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progressive loss of glutamic acid decarboxylase, parvalbumin, and calbindin D28K immunoreactive neurons in the cerebral cortex and hippocampus of adult rat with experimental hydrocephalus.
    Tashiro Y; Chakrabortty S; Drake JM; Hattori T
    J Neurosurg; 1997 Feb; 86(2):263-71. PubMed ID: 9010428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.