These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
48 related articles for article (PubMed ID: 18973043)
1. [Impact on the PDD of MV X-ray for the glass mirror in linac]. Chen Y; Yang Y; Wan JQ; Zhou YB; Zhang Y Zhongguo Yi Liao Qi Xie Za Zhi; 2008 Jul; 32(4):296-8, 307. PubMed ID: 18973043 [TBL] [Abstract][Full Text] [Related]
2. An assessment of GafChromic film for measuring 50 kV and 100 kV percentage depth dose curves. Fletcher CL; Mills JA Phys Med Biol; 2008 Jun; 53(11):N209-18. PubMed ID: 18490809 [TBL] [Abstract][Full Text] [Related]
3. A rod matrix compensator for small-field intensity modulated radiation therapy: a preliminary phantom study. Nakagawa K; Yoda K; Masutani Y; Sasaki K; Ohtomo K IEEE Trans Biomed Eng; 2007 May; 54(5):943-6. PubMed ID: 17518293 [TBL] [Abstract][Full Text] [Related]
4. Effect of electron contamination of a 6 MV x-ray beam on near surface diode dosimetry. Edwards CR; Mountford PJ; Moloney AJ Phys Med Biol; 2006 Dec; 51(24):6471-82. PubMed ID: 17148830 [TBL] [Abstract][Full Text] [Related]
5. Experimental determination of peripheral doses for different IMRT techniques delivered by a Siemens linear accelerator. Wiezorek T; Voigt A; Metzger N; Georg D; Schwedas M; Salz H; Wendt TG Strahlenther Onkol; 2008 Feb; 184(2):73-9. PubMed ID: 18259698 [TBL] [Abstract][Full Text] [Related]
7. Wedge factor changes with depth and field size on a linear accelerator with a motorized wedge. Raffaele L; Settineri N; Pergolizzi S; D'Angelo A Radiol Med; 1995 Sep; 90(3):304-6. PubMed ID: 7501838 [TBL] [Abstract][Full Text] [Related]
8. Dose-rate distribution in wedged beams of 9 MV X-rays from Linac Neptune 10p and of gamma-ray beams from Gammatron 80S. Stala T; Lobodziec W; Kośniewski W Strahlentherapie; 1984 Jan; 160(1):21-5. PubMed ID: 6701923 [TBL] [Abstract][Full Text] [Related]
9. Calculation of 10 MV x-ray spectra emitted by a medical linear accelerator using the BFGS quasi-Newton method. Shimozato T; Tabushi K; Kitoh S; Shiota Y; Hirayama C; Suzuki S Phys Med Biol; 2007 Jan; 52(2):515-23. PubMed ID: 17202630 [TBL] [Abstract][Full Text] [Related]
10. On the existence of low-energy photons (<150 keV) in the unflattened x-ray beam from an ordinary radiotherapeutic target in a medical linear accelerator. Tsechanski A; Krutman Y; Faermann S Phys Med Biol; 2005 Dec; 50(23):5629-39. PubMed ID: 16306657 [TBL] [Abstract][Full Text] [Related]
11. Flattening filter free beams in SBRT and IMRT: dosimetric assessment of peripheral doses. Kragl G; Baier F; Lutz S; Albrich D; Dalaryd M; Kroupa B; Wiezorek T; Knöös T; Georg D Z Med Phys; 2011 May; 21(2):91-101. PubMed ID: 20888199 [TBL] [Abstract][Full Text] [Related]
12. Analysis of the photoneutron activation effects generated by 9 MeV X-ray in a container cargo inspection facility. Cho YH; Kang BS Radiat Prot Dosimetry; 2010 Jun; 140(1):1-8. PubMed ID: 20159916 [TBL] [Abstract][Full Text] [Related]
13. Treatment plan comparison between helical tomotherapy and MLC-based IMRT using radiobiological measures. Mavroidis P; Ferreira BC; Shi C; Lind BK; Papanikolaou N Phys Med Biol; 2007 Jul; 52(13):3817-36. PubMed ID: 17664579 [TBL] [Abstract][Full Text] [Related]
14. [The estimation of the absorbed dose with wedge fields]. Ferri A; Ruggeri R Radiol Med; 1997 Oct; 94(4):385-7. PubMed ID: 9465247 [TBL] [Abstract][Full Text] [Related]
15. Manufacturing an active X-ray mirror prototype in thin glass. Spiga D; Barbera M; Collura A; Basso S; Candia R; Civitani M; Di Bella MS; Di Cicca G; Lo Cicero U; Lullo G; Pelliciari C; Riva M; Salmaso B; Sciortino L; Varisco S J Synchrotron Radiat; 2016 Jan; 23(1):59-66. PubMed ID: 26698046 [TBL] [Abstract][Full Text] [Related]
16. Efficient and precise fabrication of Wolter type-I x-ray mirrors via nickel electroforming replication using quartz glass mandrels. Yamaguchi G; Matsuzawa Y; Kume T; Imamura Y; Miyashita H; Ito A; Sakuta K; Ampuku K; Fujii R; Hiraguri K; Hashizume H; Mitsuishi I; Mimura H Rev Sci Instrum; 2023 Dec; 94(12):. PubMed ID: 38095540 [TBL] [Abstract][Full Text] [Related]
17. Ultra-precise characterization of LCLS hard X-ray focusing mirrors by high resolution slope measuring deflectometry. Siewert F; Buchheim J; Boutet S; Williams GJ; Montanez PA; Krzywinski J; Signorato R Opt Express; 2012 Feb; 20(4):4525-36. PubMed ID: 22418212 [TBL] [Abstract][Full Text] [Related]
18. Experimental study and analytical model of deformation of magnetostrictive films as applied to mirrors for x-ray space telescopes. Wang X; Knapp P; Vaynman S; Graham ME; Cao J; Ulmer MP Appl Opt; 2014 Sep; 53(27):6256-67. PubMed ID: 25322105 [TBL] [Abstract][Full Text] [Related]
19. Development of electroforming process for soft x-ray ellipsoidal mirror. Kume T; Takei Y; Egawa S; Motoyama H; Takeo Y; Yamaguchi G; Mimura H Rev Sci Instrum; 2019 Feb; 90(2):021718. PubMed ID: 30831680 [TBL] [Abstract][Full Text] [Related]
20. Diamond vs Beryllium Films for Improving Survivability of Metal Mirrors against X Rays. Tsacoyeanes J; Feng T J Xray Sci Technol; 1989 Jan; 1(2):154-61. PubMed ID: 21307408 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]