BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 18973562)

  • 21. TMS triggered reflexes substantiated.
    Pridmore S
    Brain Stimul; 2023; 16(4):999-1000. PubMed ID: 37315841
    [No Abstract]   [Full Text] [Related]  

  • 22. Neural computational modeling reveals a major role of corticospinal gating of central oscillations in the generation of essential tremor.
    Qu HE; Niu CM; Li S; Hao MZ; Hu ZX; Xie Q; Lan N
    Neural Regen Res; 2017 Dec; 12(12):2035-2044. PubMed ID: 29323043
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changing our thinking about walking.
    Norton J
    J Physiol; 2010 Nov; 588(Pt 22):4341. PubMed ID: 21078600
    [No Abstract]   [Full Text] [Related]  

  • 24. Modeling Electric Fields in Transcutaneous Spinal Direct Current Stimulation: A Clinical Perspective.
    Guidetti M; Giannoni-Luza S; Bocci T; Pacheco-Barrios K; Bianchi AM; Parazzini M; Ionta S; Ferrucci R; Maiorana NV; Verde F; Ticozzi N; Silani V; Priori A
    Biomedicines; 2023 Apr; 11(5):. PubMed ID: 37238953
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Music Restores Propriospinal Excitation During Stroke Locomotion.
    Peyre I; Hanna-Boutros B; Lackmy-Vallee A; Kemlin C; Bayen E; Pradat-Diehl P; Marchand-Pauvert V
    Front Syst Neurosci; 2020; 14():17. PubMed ID: 32327977
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rewiring the Lesioned Brain: Electrical Stimulation for Post-Stroke Motor Restoration.
    Bao SC; Khan A; Song R; Kai-Yu Tong R
    J Stroke; 2020 Jan; 22(1):47-63. PubMed ID: 32027791
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Which brain lesions produce spasticity? An observational study on 45 stroke patients.
    Lee KB; Hong BY; Kim JS; Sul B; Yoon SC; Ji EK; Son DB; Hwang BY; Lim SH
    PLoS One; 2019; 14(1):e0210038. PubMed ID: 30677069
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modulation of corticospinal input to the legs by arm and leg cycling in people with incomplete spinal cord injury.
    Zhou R; Alvarado L; Kim S; Chong SL; Mushahwar VK
    J Neurophysiol; 2017 Oct; 118(4):2507-2519. PubMed ID: 28701544
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acute corticospinal and spinal modulation after whole body vibration.
    Krause A; Gollhofer A; Freyler K; Jablonka L; Ritzmann R
    J Musculoskelet Neuronal Interact; 2016 Dec; 16(4):327-338. PubMed ID: 27973385
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Training-Specific Neural Plasticity in Spinal Reflexes after Incomplete Spinal Cord Injury.
    Khan AS; Patrick SK; Roy FD; Gorassini MA; Yang JF
    Neural Plast; 2016; 2016():6718763. PubMed ID: 27725887
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Framework for Understanding the Relationship between Descending Pain Modulation, Motor Corticospinal, and Neuroplasticity Regulation Systems in Chronic Myofascial Pain.
    Botelho LM; Morales-Quezada L; Rozisky JR; Brietzke AP; Torres IL; Deitos A; Fregni F; Caumo W
    Front Hum Neurosci; 2016; 10():308. PubMed ID: 27445748
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Review on Locomotor Training after Spinal Cord Injury: Reorganization of Spinal Neuronal Circuits and Recovery of Motor Function.
    Smith AC; Knikou M
    Neural Plast; 2016; 2016():1216258. PubMed ID: 27293901
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effects of experimental knee pain on lower limb corticospinal and motor cortex excitability.
    Rice DA; Graven-Nielsen T; Lewis GN; McNair PJ; Dalbeth N
    Arthritis Res Ther; 2015 Aug; 17(1):204. PubMed ID: 26264180
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Walking reduces sensorimotor network connectivity compared to standing.
    Lau TM; Gwin JT; Ferris DP
    J Neuroeng Rehabil; 2014 Feb; 11():14. PubMed ID: 24524394
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lower motor neuron findings after upper motor neuron injury: insights from postoperative supplementary motor area syndrome.
    Florman JE; Duffau H; Rughani AI
    Front Hum Neurosci; 2013; 7():85. PubMed ID: 23508473
    [TBL] [Abstract][Full Text] [Related]  

  • 36. EEG during pedaling: evidence for cortical control of locomotor tasks.
    Jain S; Gourab K; Schindler-Ivens S; Schmit BD
    Clin Neurophysiol; 2013 Feb; 124(2):379-90. PubMed ID: 23036179
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Axon regeneration can facilitate or suppress hindlimb function after olfactory ensheathing glia transplantation.
    Takeoka A; Jindrich DL; Muñoz-Quiles C; Zhong H; van den Brand R; Pham DL; Ziegler MD; Ramón-Cueto A; Roy RR; Edgerton VR; Phelps PE
    J Neurosci; 2011 Mar; 31(11):4298-310. PubMed ID: 21411671
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Corticospinal inhibition of transmission in propriospinal-like neurones during human walking.
    Iglesias C; Nielsen JB; Marchand-Pauvert V
    Eur J Neurosci; 2008 Oct; 28(7):1351-61. PubMed ID: 18973562
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced spinal excitation from ankle flexors to knee extensors during walking in stroke patients.
    Achache V; Mazevet D; Iglesias C; Lackmy A; Nielsen JB; Katz R; Marchand-Pauvert V
    Clin Neurophysiol; 2010 Jun; 121(6):930-8. PubMed ID: 20153246
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the potential role of the corticospinal tract in the control and progressive adaptation of the soleus h-reflex during backward walking.
    Ung RV; Imbeault MA; Ethier C; Brizzi L; Capaday C
    J Neurophysiol; 2005 Aug; 94(2):1133-42. PubMed ID: 15829598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.