BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1468 related articles for article (PubMed ID: 18973562)

  • 41. Long-latency, inhibitory spinal pathway to ankle flexors activated by homonymous group 1 afferents.
    Zewdie ET; Roy FD; Okuma Y; Yang JF; Gorassini MA
    J Neurophysiol; 2014 Jun; 111(12):2544-53. PubMed ID: 24671544
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Temporal facilitation prior to voluntary muscle relaxation.
    Sugawara K; Tanabe S; Higashi T; Tsurumi T; Kasai T
    Int J Neurosci; 2009; 119(3):442-52. PubMed ID: 19116847
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Vibration prolongs the cortical silent period in an antagonistic muscle.
    Binder C; Kaya AE; Liepert J
    Muscle Nerve; 2009 Jun; 39(6):776-80. PubMed ID: 19334048
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Suppression of the H reflex in humans by disynaptic autogenetic inhibitory pathways activated by the test volley.
    Marchand-Pauvert V; Nicolas G; Burke D; Pierrot-Deseilligny E
    J Physiol; 2002 Aug; 542(Pt 3):963-76. PubMed ID: 12154193
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Convergence of flexor reflex and corticospinal inputs on tibialis anterior network in humans.
    Mackey AS; Uttaro D; McDonough MP; Krivis LI; Knikou M
    Clin Neurophysiol; 2016 Jan; 127(1):706-715. PubMed ID: 26122072
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of low-frequency whole-body vibration on motor-evoked potentials in healthy men.
    Mileva KN; Bowtell JL; Kossev AR
    Exp Physiol; 2009 Jan; 94(1):103-16. PubMed ID: 18658234
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Task-related changes in propriospinal excitation from hand muscles to human flexor carpi radialis motoneurones.
    Iglesias C; Marchand-Pauvert V; Lourenco G; Burke D; Pierrot-Deseilligny E
    J Physiol; 2007 Aug; 582(Pt 3):1361-79. PubMed ID: 17510184
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Increases in corticospinal tract function by treadmill training after incomplete spinal cord injury.
    Thomas SL; Gorassini MA
    J Neurophysiol; 2005 Oct; 94(4):2844-55. PubMed ID: 16000519
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Patterned sensory stimulation induces plasticity in reciprocal ia inhibition in humans.
    Perez MA; Field-Fote EC; Floeter MK
    J Neurosci; 2003 Mar; 23(6):2014-8. PubMed ID: 12657659
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spinal reflex in human lower leg muscles evoked by transcutaneous spinal cord stimulation.
    Kitano K; Koceja DM
    J Neurosci Methods; 2009 May; 180(1):111-5. PubMed ID: 19427537
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Impaired transmission in the corticospinal tract and gait disability in spinal cord injured persons.
    Barthélemy D; Willerslev-Olsen M; Lundell H; Conway BA; Knudsen H; Biering-Sørensen F; Nielsen JB
    J Neurophysiol; 2010 Aug; 104(2):1167-76. PubMed ID: 20554839
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cortical and spinal excitability changes after robotic gait training in healthy participants.
    Blicher JU; Nielsen JF
    Neurorehabil Neural Repair; 2009 Feb; 23(2):143-9. PubMed ID: 19047360
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inter-individual variation in reciprocal Ia inhibition is dependent on the descending volleys delivered from corticospinal neurons to Ia interneurons.
    Kubota S; Uehara K; Morishita T; Hirano M; Funase K
    J Electromyogr Kinesiol; 2014 Feb; 24(1):46-51. PubMed ID: 24321700
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Direct corticospinal pathways contribute to neuromuscular control of perturbed stance.
    Taube W; Schubert M; Gruber M; Beck S; Faist M; Gollhofer A
    J Appl Physiol (1985); 2006 Aug; 101(2):420-9. PubMed ID: 16601305
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Is presynaptic inhibition distributed to corticospinal fibres in man?
    Nielsen J; Petersen N
    J Physiol; 1994 May; 477(Pt 1):47-58. PubMed ID: 8071888
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Excitability changes in human corticospinal projections to muscles moving hand and fingers while viewing a reaching and grasping action.
    Montagna M; Cerri G; Borroni P; Baldissera F
    Eur J Neurosci; 2005 Sep; 22(6):1513-20. PubMed ID: 16190904
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cortical control of spinal pathways mediating group II excitation to human thigh motoneurones.
    Marchand-Pauvert V; Simonetta-Moreau M; Pierrot-Deseilligny E
    J Physiol; 1999 May; 517 ( Pt 1)(Pt 1):301-13. PubMed ID: 10226167
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Task-related modulation of crossed spinal inhibition between human lower limbs.
    Hanna-Boutros B; Sangari S; Karasu A; Giboin LS; Marchand-Pauvert V
    J Neurophysiol; 2014 May; 111(9):1865-76. PubMed ID: 24501265
    [TBL] [Abstract][Full Text] [Related]  

  • 59. First Prize: Central motor excitability changes after spinal manipulation: a transcranial magnetic stimulation study.
    Dishman JD; Ball KA; Burke J
    J Manipulative Physiol Ther; 2002 Jan; 25(1):1-9. PubMed ID: 11898013
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Short-term effects of functional electrical stimulation on motor-evoked potentials in ankle flexor and extensor muscles.
    Kido Thompson A; Stein RB
    Exp Brain Res; 2004 Dec; 159(4):491-500. PubMed ID: 15243732
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 74.