BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 18974615)

  • 1. The apical uptake transporter of levofloxacin is distinct from the peptide transporter in human intestinal epithelial Caco-2 cells.
    Fukumori S; Murata T; Takaai M; Tahara K; Taguchi M; Hashimoto Y
    Drug Metab Pharmacokinet; 2008; 23(5):373-8. PubMed ID: 18974615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacokinetic analysis of transcellular transport of levofloxacin across LLC-PK1 and Caco-2 cell monolayers.
    Takaai M; Suzuki H; Ishida K; Tahara K; Hashimoto Y
    Biol Pharm Bull; 2007 Nov; 30(11):2167-72. PubMed ID: 17978494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Function and immunolocalization of overexpressed human intestinal H+/peptide cotransporter in adenovirus-transduced Caco-2 cells.
    Hsu CP; Walter E; Merkle HP; Rothen-Rutishauser B; Wunderli-Allenspach H; Hilfinger JM; Amidon GL
    AAPS PharmSci; 1999; 1(3):E12. PubMed ID: 11741208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. H(+)-coupled dipeptide (glycylsarcosine) transport across apical and basal borders of human intestinal Caco-2 cell monolayers display distinctive characteristics.
    Thwaites DT; Brown CD; Hirst BH; Simmons NL
    Biochim Biophys Acta; 1993 Sep; 1151(2):237-45. PubMed ID: 8373798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of intestinal dipeptide transport by the neuropeptide VIP is an anti-absorptive effect via the VPAC1 receptor in a human enterocyte-like cell line (Caco-2).
    Anderson CM; Mendoza ME; Kennedy DJ; Raldua D; Thwaites DT
    Br J Pharmacol; 2003 Feb; 138(4):564-73. PubMed ID: 12598410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Basolateral glycylsarcosine (Gly-Sar) transport in Caco-2 cell monolayers is pH dependent.
    Berthelsen R; Nielsen CU; Brodin B
    J Pharm Pharmacol; 2013 Jul; 65(7):970-9. PubMed ID: 23738724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efflux properties of basolateral peptide transporter in human intestinal cell line Caco-2.
    Irie M; Terada T; Okuda M; Inui K
    Pflugers Arch; 2004 Nov; 449(2):186-94. PubMed ID: 15340850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct transport characteristics of basolateral peptide transporters between MDCK and Caco-2 cells.
    Sawada K; Terada T; Saito H; Inui K
    Pflugers Arch; 2001 Oct; 443(1):31-7. PubMed ID: 11692263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacokinetic analysis of transcellular transport of quinidine across monolayers of human intestinal epithelial Caco-2 cells.
    Ishida K; Takaai M; Hashimoto Y
    Biol Pharm Bull; 2006 Mar; 29(3):522-6. PubMed ID: 16508158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism, uptake, and transepithelial transport of the stereoisomers of Val-Val-Val in the human intestinal cell line, Caco-2.
    Tamura K; Lee CP; Smith PL; Borchardt RT
    Pharm Res; 1996 Nov; 13(11):1663-7. PubMed ID: 8956331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epidermal growth factor and insulin short-term increase hPepT1-mediated glycylsarcosine uptake in Caco-2 cells.
    Nielsen CU; Amstrup J; Nielsen R; Steffansen B; Frokjaer S; Brodin B
    Acta Physiol Scand; 2003 Jun; 178(2):139-48. PubMed ID: 12780388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Angiotensin-converting enzyme (ACE) inhibitor transport in human intestinal epithelial (Caco-2) cells.
    Thwaites DT; Cavet M; Hirst BH; Simmons NL
    Br J Pharmacol; 1995 Mar; 114(5):981-6. PubMed ID: 7780654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional characteristics of basolateral peptide transporter in the human intestinal cell line Caco-2.
    Terada T; Sawada K; Saito H; Hashimoto Y; Inui K
    Am J Physiol; 1999 Jun; 276(6):G1435-41. PubMed ID: 10362647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interferon-gamma increases expression of the di/tri-peptide transporter, h-PEPT1, and dipeptide transport in cultured human intestinal monolayers.
    Foster DR; Landowski CP; Zheng X; Amidon GL; Welage LS
    Pharmacol Res; 2009 Mar; 59(3):215-20. PubMed ID: 19084598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition and transport characteristics of nonpeptidic compounds by basolateral peptide transporter in Caco-2 cells.
    Irie M; Terada T; Sawada K; Saito H; Inui K
    J Pharmacol Exp Ther; 2001 Aug; 298(2):711-7. PubMed ID: 11454935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The proton-coupled amino acid transporter, SLC36A1 (hPAT1), transports Gly-Gly, Gly-Sar and other Gly-Gly mimetics.
    Frølund S; Holm R; Brodin B; Nielsen CU
    Br J Pharmacol; 2010 Oct; 161(3):589-600. PubMed ID: 20880398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of the phosphonodipeptide alafosfalin by the H+/peptide cotransporters PEPT1 and PEPT2 in intestinal and renal epithelial cells.
    Neumann J; Bruch M; Gebauer S; Brandsch M
    Eur J Biochem; 2004 May; 271(10):2012-7. PubMed ID: 15128310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport of levofloxacin in the OK kidney epithelial cell line: interaction with p-aminohippurate transport.
    Matsuo Y; Yano I; Habu Y; Katsura T; Hashimoto Y; Inui K
    Pharm Res; 2001 May; 18(5):573-8. PubMed ID: 11465410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional characterization of peptide transporters in MDCKII-MDR1 cell line as a model for oral absorption studies.
    Agarwal S; Jain R; Pal D; Mitra AK
    Int J Pharm; 2007 Mar; 332(1-2):147-52. PubMed ID: 17097248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secretory mechanisms of grepafloxacin and levofloxacin in the human intestinal cell line caco-2.
    Yamaguchi H; Yano I; Hashimoto Y; Inui KI
    J Pharmacol Exp Ther; 2000 Oct; 295(1):360-6. PubMed ID: 10992002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.