BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

533 related articles for article (PubMed ID: 18974897)

  • 1. Metabolic and bacterial diversity in soils historically contaminated by heavy metals and hydrocarbons.
    Vivas A; Moreno B; del Val C; Macci C; Masciandaro G; Benitez E
    J Environ Monit; 2008 Nov; 10(11):1287-96. PubMed ID: 18974897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter.
    Wang Y; Shi J; Wang H; Lin Q; Chen X; Chen Y
    Ecotoxicol Environ Saf; 2007 May; 67(1):75-81. PubMed ID: 16828162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bulk soil and rhizosphere bacterial community PCR-DGGE profiles and beta-galactosidase activity as indicators of biological quality in soils contaminated by heavy metals and cultivated with Silene vulgaris (Moench) Garcke.
    Martínez-Iñigo MJ; Pérez-Sanz A; Ortiz I; Alonso J; Alarcón R; García P; Lobo MC
    Chemosphere; 2009 Jun; 75(10):1376-81. PubMed ID: 19345981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of 16S rDNA-PCR amplification and DGGE fingerprinting for detection of shift in microbial community diversity in Cu-, Zn-, and Cd-contaminated paddy soils.
    Li Z; Xu J; Tang C; Wu J; Muhammad A; Wang H
    Chemosphere; 2006 Mar; 62(8):1374-80. PubMed ID: 16216305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic and phylogenetic analysis of microbial communities during phytoremediation of soil contaminated with weathered hydrocarbons and heavy metals.
    Palmroth MR; Koskinen PE; Kaksonen AH; Münster U; Pichtel J; Puhakka JA
    Biodegradation; 2007 Dec; 18(6):769-82. PubMed ID: 17372705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impacts of heavy metal contamination and phytoremediation on a microbial community during a twelve-month microcosm experiment.
    Gremion F; Chatzinotas A; Kaufmann K; Von Sigler W; Harms H
    FEMS Microbiol Ecol; 2004 May; 48(2):273-83. PubMed ID: 19712410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative phylogenetic analysis of microbial communities in pristine and hydrocarbon-contaminated Alpine soils.
    Labbé D; Margesin R; Schinner F; Whyte LG; Greer CW
    FEMS Microbiol Ecol; 2007 Feb; 59(2):466-75. PubMed ID: 17313586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: do the different methods provide similar results?
    Smalla K; Oros-Sichler M; Milling A; Heuer H; Baumgarte S; Becker R; Neuber G; Kropf S; Ulrich A; Tebbe CC
    J Microbiol Methods; 2007 Jun; 69(3):470-9. PubMed ID: 17407797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restoring biochemical activity and bacterial diversity in a trichloroethylene-contaminated soil: the reclamation effect of vermicomposted olive wastes.
    Moreno B; Vivas A; Nogales R; Macci C; Masciandaro G; Benitez E
    Environ Sci Pollut Res Int; 2009 May; 16(3):253-64. PubMed ID: 18751749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of archaeal and bacterial community structures in heavily oil-contaminated and pristine soils.
    Liu R; Zhang Y; Ding R; Li D; Gao Y; Yang M
    J Biosci Bioeng; 2009 Nov; 108(5):400-7. PubMed ID: 19804864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resilience of the rhizosphere Pseudomonas and ammonia-oxidizing bacterial populations during phytoextraction of heavy metal polluted soil with poplar.
    Frey B; Pesaro M; Rüdt A; Widmer F
    Environ Microbiol; 2008 Jun; 10(6):1433-49. PubMed ID: 18279346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Significance of treated agrowaste residue and autochthonous inoculates (Arbuscular mycorrhizal fungi and Bacillus cereus) on bacterial community structure and phytoextraction to remediate soils contaminated with heavy metals.
    Azcón R; Medina A; Roldán A; Biró B; Vivas A
    Chemosphere; 2009 Apr; 75(3):327-34. PubMed ID: 19185328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil.
    Kirk JL; Klironomos JN; Lee H; Trevors JT
    Environ Pollut; 2005 Feb; 133(3):455-65. PubMed ID: 15519721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The selection of mixed microbial inocula in environmental biotechnology: example using petroleum contaminated tropical soils.
    Supaphol S; Panichsakpatana S; Trakulnaleamsai S; Tungkananuruk N; Roughjanajirapa P; O'Donnell AG
    J Microbiol Methods; 2006 Jun; 65(3):432-41. PubMed ID: 16226327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Composition of microbial communities in hexachlorocyclohexane (HCH) contaminated soils from Spain revealed with a habitat-specific microarray.
    Neufeld JD; Mohn WW; de Lorenzo V
    Environ Microbiol; 2006 Jan; 8(1):126-40. PubMed ID: 16343328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial response to heavy metal-polluted soils: community analysis from phospholipid-linked fatty acids and ester-linked fatty acids extracts.
    Hinojosa MB; Carreira JA; García-Ruíz R; Dick RP
    J Environ Qual; 2005; 34(5):1789-800. PubMed ID: 16151231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of river overflowing on trace element contamination of volcanic soils in south Italy: part II. Soil biological and biochemical properties in relation to trace element speciation.
    D'Ascoli R; Rao MA; Adamo P; Renella G; Landi L; Rutigliano FA; Terribile F; Gianfreda L
    Environ Pollut; 2006 Nov; 144(1):317-26. PubMed ID: 16406624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metal impact on bacterial biomass based on DNA analyses and uptake by wild plants in the abandoned copper mine soils.
    Guo Z; Megharaj M; Beer M; Ming H; Mahmudur Rahman M; Wu W; Naidu R
    Bioresour Technol; 2009 Sep; 100(17):3831-6. PubMed ID: 19349173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternative primer sets for PCR detection of genotypes involved in bacterial aerobic BTEX degradation: distribution of the genes in BTEX degrading isolates and in subsurface soils of a BTEX contaminated industrial site.
    Hendrickx B; Junca H; Vosahlova J; Lindner A; Rüegg I; Bucheli-Witschel M; Faber F; Egli T; Mau M; Schlömann M; Brennerova M; Brenner V; Pieper DH; Top EM; Dejonghe W; Bastiaens L; Springael D
    J Microbiol Methods; 2006 Feb; 64(2):250-65. PubMed ID: 15949858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Occurrence and community composition of fast-growing Mycobacterium in soils contaminated with polycyclic aromatic hydrocarbons.
    Leys NM; Ryngaert A; Bastiaens L; Wattiau P; Top EM; Verstraete W; Springael D
    FEMS Microbiol Ecol; 2005 Feb; 51(3):375-88. PubMed ID: 16329885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.