These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
306 related articles for article (PubMed ID: 18975848)
1. Assessing struvite precipitation in a pilot-scale fluidized bed crystallizer. Iqbal M; Bhuiyan H; Mavinic DS Environ Technol; 2008 Nov; 29(11):1157-67. PubMed ID: 18975848 [TBL] [Abstract][Full Text] [Related]
2. Modeling phosphorus removal and recovery from anaerobic digester supernatant through struvite crystallization in a fluidized bed reactor. Rahaman MS; Mavinic DS; Meikleham A; Ellis N Water Res; 2014 Mar; 51():1-10. PubMed ID: 24384559 [TBL] [Abstract][Full Text] [Related]
3. Phosphorus recovery from wastewater through struvite formation in fluidized bed reactors: a sustainable approach. Bhuiyan MI; Mavinic DS; Koch FA Water Sci Technol; 2008; 57(2):175-81. PubMed ID: 18235168 [TBL] [Abstract][Full Text] [Related]
4. Determining the feasibility of phosphorus recovery as struvite from filter press centrate in a secondary wastewater treatment plant. Fattah KP; Mavinic DS; Koch FA; Jacob C J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Jun; 43(7):756-64. PubMed ID: 18444078 [TBL] [Abstract][Full Text] [Related]
5. Recovering nutrients from wastewater treatment plants through struvite crystallization: CFD modelling of the hydrodynamics of UBC MAP fluidized-bed crystallizer. Rahaman MS; Mavinic DS Water Sci Technol; 2009; 59(10):1887-92. PubMed ID: 19474481 [TBL] [Abstract][Full Text] [Related]
6. Phosphorus removal from a real anaerobic supernatant by struvite crystallization. Battistoni P; De Angelis A; Pavan P; Prisciandaro M; Cecchi F Water Res; 2001 Jun; 35(9):2167-78. PubMed ID: 11358296 [TBL] [Abstract][Full Text] [Related]
7. Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell. Cusick RD; Ullery ML; Dempsey BA; Logan BE Water Res; 2014 May; 54():297-306. PubMed ID: 24583521 [TBL] [Abstract][Full Text] [Related]
8. Phosphorus recovery from anaerobic digester supernatant by struvite crystallization: model-based evaluation of a fluidized bed reactor. Rahaman MS; Mavinic DS; Ellis N Water Sci Technol; 2008; 58(6):1321-7. PubMed ID: 18845873 [TBL] [Abstract][Full Text] [Related]
9. Recovery of phosphorus from synthetic wastewaters by struvite crystallization in a fluidized-bed reactor: Effects of pH, phosphate concentration and coexisting ions. Shih YJ; Abarca RRM; de Luna MDG; Huang YH; Lu MC Chemosphere; 2017 Apr; 173():466-473. PubMed ID: 28135681 [TBL] [Abstract][Full Text] [Related]
10. Phosphate recovery from greenhouse wastewater. Yi WG; Lo KV J Environ Sci Health B; 2003 Jul; 38(4):501-9. PubMed ID: 12856931 [TBL] [Abstract][Full Text] [Related]
11. A new algorithm for design, operation and cost assessment of struvite (MgNH4PO4) precipitation processes. Birnhack L; Nir O; Telzhenski M; Lahav O Environ Technol; 2015; 36(13-16):1892-901. PubMed ID: 25704607 [TBL] [Abstract][Full Text] [Related]
12. Struvite precipitation potential for nutrient recovery from anaerobically treated wastes. Miles A; Ellis TG Water Sci Technol; 2001; 43(11):259-66. PubMed ID: 11443971 [TBL] [Abstract][Full Text] [Related]
13. A pilot-scale study of struvite precipitation in a stirred tank reactor: conditions influencing the process. Pastor L; Mangin D; Barat R; Seco A Bioresour Technol; 2008 Sep; 99(14):6285-91. PubMed ID: 18194863 [TBL] [Abstract][Full Text] [Related]
14. Evaluation and thermodynamic calculation of ureolytic magnesium ammonium phosphate precipitation from UASB effluent at pilot scale. Desmidt E; Ghyselbrecht K; Monballiu A; Verstraete W; Meesschaert BD Water Sci Technol; 2012; 65(11):1954-62. PubMed ID: 22592464 [TBL] [Abstract][Full Text] [Related]
15. Thermal decomposition of struvite and its phase transition. Bhuiyan MI; Mavinic DS; Koch FA Chemosphere; 2008 Feb; 70(8):1347-56. PubMed ID: 18022212 [TBL] [Abstract][Full Text] [Related]
16. Phosphorus recovery by struvite crystallization in WWTPs: influence of the sludge treatment line operation. Martà N; Pastor L; Bouzas A; Ferrer J; Seco A Water Res; 2010 Apr; 44(7):2371-9. PubMed ID: 20089291 [TBL] [Abstract][Full Text] [Related]
17. [Optimal formation conditions and analytical methods of the target product by MAP precipitation]. Hao XD; Lan L; Wang CC; van Loosdrecht MC Huan Jing Ke Xue; 2009 Apr; 30(4):1120-5. PubMed ID: 19545017 [TBL] [Abstract][Full Text] [Related]
18. Impact of supersaturation ratio on phosphorus recovery from synthetic anaerobic digester supernatant through a struvite crystallization fluidized bed reactor. Ghosh S; Lobanov S; Lo VK Environ Technol; 2019 Jun; 40(15):2000-2010. PubMed ID: 29388510 [TBL] [Abstract][Full Text] [Related]
19. Impact of reactor operation on success of struvite precipitation from synthetic liquors. Le Corre KS; Valsami-Jones E; Hobbs P; Parsons SA Environ Technol; 2007 Nov; 28(11):1245-56. PubMed ID: 18290534 [TBL] [Abstract][Full Text] [Related]
20. Phosphorus removal from anaerobically digested swine wastewater through struvite precipitation. Jordaan EM; Ackerman J; Cicek N Water Sci Technol; 2010; 61(12):3228-34. PubMed ID: 20555221 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]