These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 18975918)
1. Promiscuous sulfatase activity and thio-effects in a phosphodiesterase of the alkaline phosphatase superfamily. Lassila JK; Herschlag D Biochemistry; 2008 Dec; 47(48):12853-9. PubMed ID: 18975918 [TBL] [Abstract][Full Text] [Related]
2. Site-directed mutagenesis maps interactions that enhance cognate and limit promiscuous catalysis by an alkaline phosphatase superfamily phosphodiesterase. Wiersma-Koch H; Sunden F; Herschlag D Biochemistry; 2013 Dec; 52(51):9167-76. PubMed ID: 24261692 [TBL] [Abstract][Full Text] [Related]
3. QM/MM analysis suggests that Alkaline Phosphatase (AP) and nucleotide pyrophosphatase/phosphodiesterase slightly tighten the transition state for phosphate diester hydrolysis relative to solution: implication for catalytic promiscuity in the AP superfamily. Hou G; Cui Q J Am Chem Soc; 2012 Jan; 134(1):229-46. PubMed ID: 22097879 [TBL] [Abstract][Full Text] [Related]
4. Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase. O'Brien PJ; Herschlag D Biochemistry; 2001 May; 40(19):5691-9. PubMed ID: 11341834 [TBL] [Abstract][Full Text] [Related]
5. Structural and functional comparisons of nucleotide pyrophosphatase/phosphodiesterase and alkaline phosphatase: implications for mechanism and evolution. Zalatan JG; Fenn TD; Brunger AT; Herschlag D Biochemistry; 2006 Aug; 45(32):9788-803. PubMed ID: 16893180 [TBL] [Abstract][Full Text] [Related]
6. High-resolution analysis of Zn(2+) coordination in the alkaline phosphatase superfamily by EXAFS and x-ray crystallography. Bobyr E; Lassila JK; Wiersma-Koch HI; Fenn TD; Lee JJ; Nikolic-Hughes I; Hodgson KO; Rees DC; Hedman B; Herschlag D J Mol Biol; 2012 Jan; 415(1):102-17. PubMed ID: 22056344 [TBL] [Abstract][Full Text] [Related]
8. Theoretical study of phosphodiester hydrolysis in nucleotide pyrophosphatase/phosphodiesterase. Environmental effects on the reaction mechanism. López-Canut V; Roca M; Bertrán J; Moliner V; Tuñón I J Am Chem Soc; 2010 May; 132(20):6955-63. PubMed ID: 20429564 [TBL] [Abstract][Full Text] [Related]
9. A new member of the alkaline phosphatase superfamily with a formylglycine nucleophile: structural and kinetic characterisation of a phosphonate monoester hydrolase/phosphodiesterase from Rhizobium leguminosarum. Jonas S; van Loo B; Hyvönen M; Hollfelder F J Mol Biol; 2008 Dec; 384(1):120-36. PubMed ID: 18793651 [TBL] [Abstract][Full Text] [Related]
10. Probing the origin of the compromised catalysis of E. coli alkaline phosphatase in its promiscuous sulfatase reaction. Catrina I; O'Brien PJ; Purcell J; Nikolic-Hughes I; Zalatan JG; Hengge AC; Herschlag D J Am Chem Soc; 2007 May; 129(17):5760-5. PubMed ID: 17411045 [TBL] [Abstract][Full Text] [Related]
11. Mechanistic and Evolutionary Insights from Comparative Enzymology of Phosphomonoesterases and Phosphodiesterases across the Alkaline Phosphatase Superfamily. Sunden F; AlSadhan I; Lyubimov AY; Ressl S; Wiersma-Koch H; Borland J; Brown CL; Johnson TA; Singh Z; Herschlag D J Am Chem Soc; 2016 Nov; 138(43):14273-14287. PubMed ID: 27670607 [TBL] [Abstract][Full Text] [Related]
12. Structural and Mechanistic Analysis of the Choline Sulfatase from Sinorhizobium melliloti: A Class I Sulfatase Specific for an Alkyl Sulfate Ester. van Loo B; Schober M; Valkov E; Heberlein M; Bornberg-Bauer E; Faber K; Hyvönen M; Hollfelder F J Mol Biol; 2018 Mar; 430(7):1004-1023. PubMed ID: 29458126 [TBL] [Abstract][Full Text] [Related]
13. Mutation of Arg-166 of alkaline phosphatase alters the thio effect but not the transition state for phosphoryl transfer. Implications for the interpretation of thio effects in reactions of phosphatases. Holtz KM; Catrina IE; Hengge AC; Kantrowitz ER Biochemistry; 2000 Aug; 39(31):9451-8. PubMed ID: 10924140 [TBL] [Abstract][Full Text] [Related]
14. Comparative enzymology in the alkaline phosphatase superfamily to determine the catalytic role of an active-site metal ion. Zalatan JG; Fenn TD; Herschlag D J Mol Biol; 2008 Dec; 384(5):1174-89. PubMed ID: 18851975 [TBL] [Abstract][Full Text] [Related]
15. Probing the origins of catalytic discrimination between phosphate and sulfate monoester hydrolysis: comparative analysis of alkaline phosphatase and protein tyrosine phosphatases. Andrews LD; Zalatan JG; Herschlag D Biochemistry; 2014 Nov; 53(43):6811-9. PubMed ID: 25299936 [TBL] [Abstract][Full Text] [Related]
16. Catalytic proficiency: the extreme case of S-O cleaving sulfatases. Edwards DR; Lohman DC; Wolfenden R J Am Chem Soc; 2012 Jan; 134(1):525-31. PubMed ID: 22087808 [TBL] [Abstract][Full Text] [Related]
17. Transition States and Control of Substrate Preference in the Promiscuous Phosphatase PP1. Chu Y; Williams NH; Hengge AC Biochemistry; 2017 Aug; 56(30):3923-3933. PubMed ID: 28678475 [TBL] [Abstract][Full Text] [Related]
18. Investigations of the esterase, phosphatase, and sulfatase activities of the cytosolic mammalian carbonic anhydrase isoforms I, II, and XIII with 4-nitrophenyl esters as substrates. Innocenti A; Scozzafava A; Parkkila S; Puccetti L; De Simone G; Supuran CT Bioorg Med Chem Lett; 2008 Apr; 18(7):2267-71. PubMed ID: 18353640 [TBL] [Abstract][Full Text] [Related]
19. Phosphodiesterase activity is a novel property of alkaline phosphatase from osseous plate. Rezende AA; Pizauro JM; Ciancaglini P; Leone FA Biochem J; 1994 Jul; 301 ( Pt 2)(Pt 2):517-22. PubMed ID: 8042997 [TBL] [Abstract][Full Text] [Related]
20. Kinetic isotope effects for alkaline phosphatase reactions: implications for the role of active-site metal ions in catalysis. Zalatan JG; Catrina I; Mitchell R; Grzyska PK; O'brien PJ; Herschlag D; Hengge AC J Am Chem Soc; 2007 Aug; 129(31):9789-98. PubMed ID: 17630738 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]