These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

757 related articles for article (PubMed ID: 18977015)

  • 1. Enhanced mobilization of arsenic and heavy metals from mine tailings by humic acid.
    Wang S; Mulligan CN
    Chemosphere; 2009 Jan; 74(2):274-9. PubMed ID: 18977015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of natural organic matter on arsenic mobilization from mine tailings.
    Wang S; Mulligan CN
    J Hazard Mater; 2009 Sep; 168(2-3):721-6. PubMed ID: 19297087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of three low-molecular-weight organic acids (LMWOAs) and pH on the mobilization of arsenic and heavy metals (Cu, Pb, and Zn) from mine tailings.
    Wang S; Mulligan CN
    Environ Geochem Health; 2013 Feb; 35(1):111-8. PubMed ID: 22648854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the potential of indigenous calcareous shale for neutralization and removal of arsenic and heavy metals from acid mine drainage in the Taxco mining area, Mexico.
    Romero FM; Núñez L; Gutiérrez ME; Armienta MA; Ceniceros-Gómez AE
    Arch Environ Contam Toxicol; 2011 Feb; 60(2):191-203. PubMed ID: 20523977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heavy metals mobilization from harbour sediments using EDTA and citric acid as chelating agents.
    Di Palma L; Mecozzi R
    J Hazard Mater; 2007 Aug; 147(3):768-75. PubMed ID: 17321047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching.
    Liu YG; Zhou M; Zeng GM; Li X; Xu WH; Fan T
    J Hazard Mater; 2007 Mar; 141(1):202-8. PubMed ID: 16887262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of sewage sludge application on heavy metal leaching from mine tailings impoundments.
    Andrés NF; Francisco MS
    Bioresour Technol; 2008 Nov; 99(16):7521-30. PubMed ID: 18372173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Red mud and fly ash for remediation of mine sites contaminated with As, Cd, Cu, Pb and Zn.
    Bertocchi AF; Ghiani M; Peretti R; Zucca A
    J Hazard Mater; 2006 Jun; 134(1-3):112-9. PubMed ID: 16326004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances.
    Halim M; Conte P; Piccolo A
    Chemosphere; 2003 Jul; 52(1):265-75. PubMed ID: 12729711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reclamation of a mine contaminated soil using biologically reactive organic matrices.
    Alvarenga P; Gonçalves AP; Fernandes RM; de Varennes A; Duarte E; Cunha-Queda AC; Vallini G
    Waste Manag Res; 2009 Mar; 27(2):101-11. PubMed ID: 19244409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of compost, pig slurry and lime on trace element solubility and toxicity in two soils differently affected by mining activities.
    Pardo T; Clemente R; Bernal MP
    Chemosphere; 2011 Jul; 84(5):642-50. PubMed ID: 21492902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heavy metal contamination from mining sites in South Morocco: 1. Use of a biotest to assess metal toxicity of tailings and soils.
    Boularbah A; Schwartz C; Bitton G; Morel JL
    Chemosphere; 2006 May; 63(5):802-10. PubMed ID: 16213554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena-La Unión mining district (SE Spain).
    Conesa HM; Faz A; Arnaldos R
    Sci Total Environ; 2006 Jul; 366(1):1-11. PubMed ID: 16499952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of combined pollution by heavy metals on soil enzymatic activities in areas polluted by tailings from Pb-Zn-Ag mine.
    Chen CL; Liao M; Huang CY
    J Environ Sci (China); 2005; 17(4):637-40. PubMed ID: 16158595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of biochar on mine tailings: effects and perspectives for land reclamation.
    Fellet G; Marchiol L; Delle Vedove G; Peressotti A
    Chemosphere; 2011 May; 83(9):1262-7. PubMed ID: 21501855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain.
    Rodríguez L; Ruiz E; Alonso-Azcárate J; Rincón J
    J Environ Manage; 2009 Feb; 90(2):1106-16. PubMed ID: 18572301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electromigration of arsenic and co-existing metals in mine tailings.
    Isosaari P; Sillanpää M
    Chemosphere; 2010 Nov; 81(9):1155-8. PubMed ID: 20888026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth of Vetiveria zizanioides and Phragmities australis on Pb/Zn and Cu mine tailings amended with manure compost and sewage sludge: a greenhouse study.
    Chiu KK; Ye ZH; Wong MH
    Bioresour Technol; 2006 Jan; 97(1):158-70. PubMed ID: 16154513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation and risk assessment modeling of As and other heavy metals contamination around five abandoned metal mines in Korea.
    Kim JY; Kim KW; Ahn JS; Ko I; Lee CH
    Environ Geochem Health; 2005 Apr; 27(2):193-203. PubMed ID: 16003587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the effectiveness of phosphate treatment for the remediation of mine waste soils contaminated with Cd, Cu, Pb, and Zn.
    Mignardi S; Corami A; Ferrini V
    Chemosphere; 2012 Jan; 86(4):354-60. PubMed ID: 22024096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.