These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 18977132)

  • 1. Monofermentation of grass silage under mesophilic conditions: measurements and mathematical modeling with ADM 1.
    Wichern M; Gehring T; Fischer K; Andrade D; Lübken M; Koch K; Gronauer A; Horn H
    Bioresour Technol; 2009 Feb; 100(4):1675-81. PubMed ID: 18977132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biogas from grass silage - Measurements and modeling with ADM1.
    Koch K; Lübken M; Gehring T; Wichern M; Horn H
    Bioresour Technol; 2010 Nov; 101(21):8158-65. PubMed ID: 20580224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mono fermentation of grass silage by means of loop reactors.
    Koch K; Wichern M; Lübken M; Horn H
    Bioresour Technol; 2009 Dec; 100(23):5934-40. PubMed ID: 19577462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigations and mathematical simulation on decentralized anaerobic treatment of agricultural substrate from livestock farming.
    Wichern M; Lübken M; Horn H; Schlattmann M; Gronauer A
    Water Sci Technol; 2008; 58(1):67-72. PubMed ID: 18653938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling mono-digestion of grass silage in a 2-stage CSTR anaerobic digester using ADM1.
    Thamsiriroj T; Murphy JD
    Bioresour Technol; 2011 Jan; 102(2):948-59. PubMed ID: 20943383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electricity generation in single-chamber microbial fuel cells using a carbon source sampled from anaerobic reactors utilizing grass silage.
    Catal T; Cysneiros D; O'Flaherty V; Leech D
    Bioresour Technol; 2011 Jan; 102(1):404-10. PubMed ID: 20667712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model-based predictions of anaerobic digestion of agricultural substrates for biogas production.
    Zhou H; Löffler D; Kranert M
    Bioresour Technol; 2011 Dec; 102(23):10819-28. PubMed ID: 21974886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anaerobic digestion of grass silage in batch leach bed processes for methane production.
    Lehtomäki A; Huttunen S; Lehtinen TM; Rintala JA
    Bioresour Technol; 2008 May; 99(8):3267-78. PubMed ID: 17702572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variation of ADM1 by using temperature-phased anaerobic digestion (TPAD) operation.
    Lee MY; Suh CW; Ahn YT; Shin HS
    Bioresour Technol; 2009 Jun; 100(11):2816-22. PubMed ID: 19217774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of a fuzzy logic control system for continuous anaerobic digestion of low buffered, acidic energy crops as mono-substrate.
    Scherer P; Lehmann K; Schmidt O; Demirel B
    Biotechnol Bioeng; 2009 Feb; 102(3):736-48. PubMed ID: 18988261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of micro-aeration and leachate replacement on COD solubilization and VFA production during mono-digestion of grass-silage in one-stage leach-bed reactors.
    Jagadabhi PS; Kaparaju P; Rintala J
    Bioresour Technol; 2010 Apr; 101(8):2818-24. PubMed ID: 19942432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of modeling to aid design of a two-phase grass digestion system.
    Thamsiriroj T; Nizami AS; Murphy JD
    Bioresour Technol; 2012 Apr; 110():379-89. PubMed ID: 22342589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The valuation of malnutrition in the mono-digestion of maize silage by anaerobic batch tests.
    Hinken L; Urban I; Haun E; Urban I; Weichgrebe D; Rosenwinkel KH
    Water Sci Technol; 2008; 58(7):1453-9. PubMed ID: 18957759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermophilic anaerobic digestion in compact systems: investigations by modern microbiological techniques and mathematical simulation.
    Lübken M; Wichern M; Letsiou I; Kehl O; Bischof F; Horn H
    Water Sci Technol; 2007; 56(10):19-28. PubMed ID: 18048973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial community dynamics during the ensilage of wilted grass.
    McEniry J; O'Kiely P; Clipson NJ; Forristal PD; Doyle EM
    J Appl Microbiol; 2008 Aug; 105(2):359-71. PubMed ID: 18422959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen bio-production through anaerobic microorganism fermentation using kitchen wastes as substrate.
    Shi Y; Zhao XT; Cao P; Hu Y; Zhang L; Jia Y; Lu Z
    Biotechnol Lett; 2009 Sep; 31(9):1327-33. PubMed ID: 19466560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of activated sludge stabilisation and filterability during anaerobic digestion by fruit and vegetable waste addition.
    Habiba L; Hassib B; Moktar H
    Bioresour Technol; 2009 Feb; 100(4):1555-60. PubMed ID: 18977658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen-producing capability of anaerobic activated sludge in three types of fermentations in a continuous stirred-tank reactor.
    Li J; Zheng G; He J; Chang S; Qin Z
    Biotechnol Adv; 2009; 27(5):573-7. PubMed ID: 19393312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions: effect of pH.
    Zhang P; Chen Y; Zhou Q
    Water Res; 2009 Aug; 43(15):3735-42. PubMed ID: 19555988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables.
    Kim JI; Varner JD; Ramkrishna D
    Biotechnol Prog; 2008; 24(5):993-1006. PubMed ID: 19194908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.