These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 18977138)

  • 1. Biodegradation of high molecular weight lignin under sulfate reducing conditions: lignin degradability and degradation by-products.
    Ko JJ; Shimizu Y; Ikeda K; Kim SK; Park CH; Matsui S
    Bioresour Technol; 2009 Feb; 100(4):1622-7. PubMed ID: 18977138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol: a microcosm study.
    Chen YD; Barker JF; Gui L
    J Contam Hydrol; 2008 Feb; 96(1-4):17-31. PubMed ID: 17964687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of lignin content and temperature on the biodegradation of lignocellulose in composting conditions.
    Vikman M; Karjomaa S; Kapanen A; Wallenius K; Itävaara M
    Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):591-8. PubMed ID: 12172631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of lignin and sugars to the aerobic decomposition of solid wastes.
    Komilis DP; Ham RK
    Waste Manag; 2003; 23(5):419-23. PubMed ID: 12893014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Antioxidant activity in fungi degrading lignocellulose substrates].
    Babitskaia VG; Shcherba VV
    Prikl Biokhim Mikrobiol; 2002; 38(2):169-73. PubMed ID: 11962215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradation of kraft-lignin by Bacillus sp. isolated from sludge of pulp and paper mill.
    Raj A; Reddy MM; Chandra R; Purohit HJ; Kapley A
    Biodegradation; 2007 Dec; 18(6):783-92. PubMed ID: 17308883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lignin degradation in a compost environment by the deuteromycete Paecilomyces inflatus.
    Kluczek-Turpeinen B; Tuomela M; Hatakka A; Hofrichter M
    Appl Microbiol Biotechnol; 2003 May; 61(4):374-9. PubMed ID: 12743768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of seaweed and sugarcane bagasse for the biological treatment of metal-contaminated waters under sulfate-reducing conditions.
    Gonçalves MM; de Oliveira Mello LA; da Costa AC
    Appl Biochem Biotechnol; 2008 Mar; 147(1-3):97-105. PubMed ID: 18401756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon and hydrogen isotope fractionation of benzene during biodegradation under sulfate-reducing conditions: a laboratory to field site approach.
    Fischer A; Gehre M; Breitfeld J; Richnow HH; Vogt C
    Rapid Commun Mass Spectrom; 2009 Aug; 23(16):2439-47. PubMed ID: 19603470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The degradation of lignocellulose in a chemically and biologically generated sulphidic environment.
    Roman H; Madikane M; Pletschke BI; Rose PD
    Bioresour Technol; 2008 May; 99(7):2333-9. PubMed ID: 17604622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaerobic degradation of landfill leachate using an upflow anaerobic fixed-bed reactor with microbial sulfate reduction.
    Thabet OB; Bouallagui H; Cayol JL; Ollivier B; Fardeau ML; Hamdi M
    J Hazard Mater; 2009 Aug; 167(1-3):1133-40. PubMed ID: 19272702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of a white rot fungus Bjerkandera sp. strain capable of oxidizing phenanthrene.
    Terrazas-Siles E; Alvarez T; Guieysse B; Mattiasson B
    Biotechnol Lett; 2005 Jun; 27(12):845-51. PubMed ID: 16086246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Straw bio-degradation by acidogenic bacteria and composite fungi.
    Zhang KQ; Chen XW; Ji M; Ning AR; Fan H; Zhou K
    J Environ Sci (China); 2004; 16(4):690-3. PubMed ID: 15495983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics and function of a low-molecular-weight compound with reductive activity from Phanerochaetechrysosporium in lignin biodegradation.
    Hu M; Zhang W; Wu Y; Gao P; Lu X
    Bioresour Technol; 2009 Mar; 100(6):2077-81. PubMed ID: 19038543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of lignin and lignin model compound under sulfate reducing condition.
    Pareek S; Azuma JI; Matsui S; Shimizu Y
    Water Sci Technol; 2001; 44(2-3):351-8. PubMed ID: 11548005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical characterisation of organic electron donors for sulfate reduction for potential use in acid mine drainage treatment.
    Coetser SE; Pulles W; Heath RG; Cloete TE
    Biodegradation; 2006 Mar; 17(2):169-79. PubMed ID: 16447029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphate removal and sulfate reduction in a denitrification reactor packed with iron and wood as electron donors.
    Yamashita T; Yamamoto-Ikemoto R
    Water Sci Technol; 2008; 58(7):1405-13. PubMed ID: 18957753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of oxidized leachate on degradation of lignin by sulfate-reducing bacteria.
    Kim JH; Kim M; Bae W
    Waste Manag Res; 2009 Aug; 27(5):520-6. PubMed ID: 19423591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Degradation of plant waste by Coprinus truncorum using 2 culture methods].
    Diorio LA; Mercuri OA; Forchiassin F
    Rev Argent Microbiol; 2001; 33(2):59-64. PubMed ID: 11494757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Renewable resources as reinforcement of polymeric matrices: composites based on phenolic thermosets and chemically modified sisal fibers.
    Megiatto JD; Oliveira FB; Rosa DS; Gardrat C; Castellan A; Frollini E
    Macromol Biosci; 2007 Sep; 7(9-10):1121-31. PubMed ID: 17676656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.