These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 18977235)

  • 1. Grasping tools: effects of task and apraxia.
    Randerath J; Li Y; Goldenberg G; Hermsdörfer J
    Neuropsychologia; 2009 Jan; 47(2):497-505. PubMed ID: 18977235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different left brain regions are essential for grasping a tool compared with its subsequent use.
    Randerath J; Goldenberg G; Spijkers W; Li Y; Hermsdörfer J
    Neuroimage; 2010 Oct; 53(1):171-80. PubMed ID: 20600986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different constraints on grip selection in brain-damaged patients: object use versus object transport.
    Osiurak F; Aubin G; Allain P; Jarry C; Etcharry-Bouyx F; Richard I; Le Gall D
    Neuropsychologia; 2008; 46(9):2431-4. PubMed ID: 18462765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of a tool requires its incorporation into the movement: evidence from stick-pointing in apraxia.
    Jacobs S; Bussel B; Combeaud M; Roby-Brami A
    Cortex; 2009 Apr; 45(4):444-55. PubMed ID: 19231475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tool use kinematics across different modes of execution. Implications for action representation and apraxia.
    Hermsdörfer J; Li Y; Randerath J; Roby-Brami A; Goldenberg G
    Cortex; 2013 Jan; 49(1):184-99. PubMed ID: 22176873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tool-use and the left hemisphere: what is lost in ideomotor apraxia?
    Sunderland A; Wilkins L; Dineen R; Dawson SE
    Brain Cogn; 2013 Mar; 81(2):183-92. PubMed ID: 23262173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precision grasps of children and young and old adults: individual differences in digit contact strategy, purchase pattern, and digit posture.
    Wong YJ; Whishaw IQ
    Behav Brain Res; 2004 Sep; 154(1):113-23. PubMed ID: 15302117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The neural basis of tool use.
    Goldenberg G; Spatt J
    Brain; 2009 Jun; 132(Pt 6):1645-55. PubMed ID: 19351777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deficient sequencing of pantomimes in apraxia.
    Weiss PH; Rahbari NN; Hesse MD; Fink GR
    Neurology; 2008 Mar; 70(11):834-40. PubMed ID: 18332341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of unilateral brain damage on anticipatory grip force scaling when lifting everyday objects.
    Eidenmüller S; Randerath J; Goldenberg G; Li Y; Hermsdörfer J
    Neuropsychologia; 2014 Aug; 61():222-34. PubMed ID: 24978304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial and kinematic features of apraxic movement depend on the mode of execution.
    Hermsdörfer J; Hentze S; Goldenberg G
    Neuropsychologia; 2006; 44(10):1642-52. PubMed ID: 16678222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural substrates of knowledge of hand postures for object grasping and functional object use: evidence from fMRI.
    Buxbaum LJ; Kyle KM; Tang K; Detre JA
    Brain Res; 2006 Oct; 1117(1):175-85. PubMed ID: 16962075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinctions between manipulation and function knowledge of objects: evidence from functional magnetic resonance imaging.
    Boronat CB; Buxbaum LJ; Coslett HB; Tang K; Saffran EM; Kimberg DY; Detre JA
    Brain Res Cogn Brain Res; 2005 May; 23(2-3):361-73. PubMed ID: 15820643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speed of motor execution and apraxia.
    Spatt J; Goldenberg G
    J Clin Exp Neuropsychol; 1997 Dec; 19(6):850-6. PubMed ID: 9524879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of irrelevant stimulus orientation on visually guided grasping movements.
    Wühr P; Elsner B
    Behav Neurosci; 2007 Apr; 121(2):301-9. PubMed ID: 17469919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The significance of clumsy gestures in apraxia following a left hemisphere stroke.
    Kangas M; Tate RL
    Neuropsychol Rehabil; 2006 Feb; 16(1):38-65. PubMed ID: 16509518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The potentiation of two components of the reach-to-grasp action during object categorisation in visual memory.
    Derbyshire N; Ellis R; Tucker M
    Acta Psychol (Amst); 2006 May; 122(1):74-98. PubMed ID: 16376844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the role of the ventral premotor cortex and anterior intraparietal area for predictive and reactive scaling of grip force.
    Dafotakis M; Sparing R; Eickhoff SB; Fink GR; Nowak DA
    Brain Res; 2008 Sep; 1228():73-80. PubMed ID: 18601912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemisphere specific impairments in reach-to-grasp control after stroke: effects of object size.
    Tretriluxana J; Gordon J; Fisher BE; Winstein CJ
    Neurorehabil Neural Repair; 2009 Sep; 23(7):679-91. PubMed ID: 19411406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The neural basis of selection-for-action.
    Chapman H; Pierno AC; Cunnington R; Gavrilescu M; Egan G; Castiello U
    Neurosci Lett; 2007 May; 417(2):171-5. PubMed ID: 17412509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.