These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 18977287)

  • 1. Stimulus design for auditory neuroethology using state space modeling and the extended Kalman smoother.
    Holmstrom L; Kim S; McNames J; Portfors C
    Hear Res; 2009 Jan; 247(1):1-16. PubMed ID: 18977287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Playback of 22-kHz and 50-kHz ultrasonic vocalizations induces differential c-fos expression in rat brain.
    Sadananda M; Wöhr M; Schwarting RK
    Neurosci Lett; 2008 Apr; 435(1):17-23. PubMed ID: 18328625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Responses to social vocalizations in the inferior colliculus of the mustached bat are influenced by secondary tuning curves.
    Holmstrom L; Roberts PD; Portfors CV
    J Neurophysiol; 2007 Dec; 98(6):3461-72. PubMed ID: 17928559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic features of rhesus vocalizations and their representation in the ventrolateral prefrontal cortex.
    Cohen YE; Theunissen F; Russ BE; Gill P
    J Neurophysiol; 2007 Feb; 97(2):1470-84. PubMed ID: 17135477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Principal and independent components of macaque vocalizations: constructing stimuli to probe high-level sensory processing.
    Averbeck BB; Romanski LM
    J Neurophysiol; 2004 Jun; 91(6):2897-909. PubMed ID: 15136606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resolving precise temporal processing properties of the auditory system using continuous stimuli.
    Lalor EC; Power AJ; Reilly RB; Foxe JJ
    J Neurophysiol; 2009 Jul; 102(1):349-59. PubMed ID: 19439675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal dynamics of adaptation to natural sounds in the human auditory cortex.
    Altmann CF; Nakata H; Noguchi Y; Inui K; Hoshiyama M; Kaneoke Y; Kakigi R
    Cereb Cortex; 2008 Jun; 18(6):1350-60. PubMed ID: 17893422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auditory stream segregation in an insect.
    Schul J; Sheridan RA
    Neuroscience; 2006; 138(1):1-4. PubMed ID: 16378693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auditory steady-state responses to chirp stimuli based on cochlear traveling wave delay.
    Elberling C; Don M; Cebulla M; Stürzebecher E
    J Acoust Soc Am; 2007 Nov; 122(5):2772-85. PubMed ID: 18189568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An autocorrelation model of bat sonar.
    Wiegrebe L
    Biol Cybern; 2008 Jun; 98(6):587-95. PubMed ID: 18491168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Auditory memory: a comparison between humans and starlings.
    Zokoll MA; Naue N; Herrmann CS; Langemann U
    Brain Res; 2008 Jul; 1220():33-46. PubMed ID: 18291352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A modeling approach to explain pulse design in bats.
    Boonman A; Ostwald J
    Biol Cybern; 2007 Aug; 97(2):159-72. PubMed ID: 17610077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vertebrate neuroethology: definitions and paradigms.
    Ingle D; Crews D
    Annu Rev Neurosci; 1985; 8():457-94. PubMed ID: 3885831
    [No Abstract]   [Full Text] [Related]  

  • 14. Auditory frequency selectivity is better for expected than for unexpected sound duration.
    Wu CH; Jen PH
    Neuroreport; 2008 Jan; 19(1):127-31. PubMed ID: 18281906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A versatile pitch tracking algorithm: from human speech to killer whale vocalizations.
    Shapiro AD; Wang C
    J Acoust Soc Am; 2009 Jul; 126(1):451-9. PubMed ID: 19603902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extraction of sources of distortion product otoacoustic emissions by onset-decomposition.
    Vetesník A; Turcanu D; Dalhoff E; Gummer AW
    Hear Res; 2009 Oct; 256(1-2):21-38. PubMed ID: 19523509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear phenomena in the vocalizations of North Atlantic right whales (Eubalaena glacialis) and killer whales (Orcinus orca).
    Tyson RB; Nowacek DP; Miller PJ
    J Acoust Soc Am; 2007 Sep; 122(3):1365. PubMed ID: 17927399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cortical representations of communication sounds.
    Heiser MA; Cheung SW
    Curr Opin Otolaryngol Head Neck Surg; 2008 Oct; 16(5):478-84. PubMed ID: 18797292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defining the rhythmicity of memory-enhancing acoustic stimuli in the young domestic chick (Gallus gallus).
    Rickard NS
    J Comp Psychol; 2009 May; 123(2):217-21. PubMed ID: 19450028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the neurophysiological basis of auditory abilities for social communication: a perspective on the value of ethological paradigms.
    Bennur S; Tsunada J; Cohen YE; Liu RC
    Hear Res; 2013 Nov; 305():3-9. PubMed ID: 23994815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.