BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 18977317)

  • 1. Influence of differential expression of acetylcholinesterase in brain and muscle on respiration.
    Boudinot E; Bernard V; Camp S; Taylor P; Champagnat J; Krejci E; Foutz AS
    Respir Physiol Neurobiol; 2009 Jan; 165(1):40-8. PubMed ID: 18977317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Respiratory survival mechanisms in acetylcholinesterase knockout mouse.
    Chatonnet F; Boudinot E; Chatonnet A; Taysse L; Daulon S; Champagnat J; Foutz AS
    Eur J Neurosci; 2003 Sep; 18(6):1419-27. PubMed ID: 14511322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of acetylcholinesterase and butyrylcholinesterase inhibition on breathing in mice adapted or not to reduced acetylcholinesterase.
    Boudinot E; Taysse L; Daulon S; Chatonnet A; Champagnat J; Foutz AS
    Pharmacol Biochem Behav; 2005 Jan; 80(1):53-61. PubMed ID: 15652380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acetylcholinesterase (AChE) gene modification in transgenic animals: functional consequences of selected exon and regulatory region deletion.
    Camp S; Zhang L; Marquez M; de la Torre B; Long JM; Bucht G; Taylor P
    Chem Biol Interact; 2005 Dec; 157-158():79-86. PubMed ID: 16289062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remodeling of the neuromuscular junction in mice with deleted exons 5 and 6 of acetylcholinesterase.
    Girard E; Bernard V; Camp S; Taylor P; Krejci E; Molgó J
    J Mol Neurosci; 2006; 30(1-2):99-100. PubMed ID: 17192646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased ventilation and CO2 chemosensitivity in acetylcholinesterase knockout mice.
    Boudinot E; Emery MJ; Mouisel E; Chatonnet A; Champagnat J; Escourrou P; Foutz AS
    Respir Physiol Neurobiol; 2004 Jun; 140(3):231-41. PubMed ID: 15186785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-complete adaptation of the PRiMA knockout to the lack of central acetylcholinesterase.
    Farar V; Mohr F; Legrand M; Lamotte d'Incamps B; Cendelin J; Leroy J; Abitbol M; Bernard V; Baud F; Fournet V; Houze P; Klein J; Plaud B; Tuma J; Zimmermann M; Ascher P; Hrabovska A; Myslivecek J; Krejci E
    J Neurochem; 2012 Sep; 122(5):1065-80. PubMed ID: 22747514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contributions of selective knockout studies to understanding cholinesterase disposition and function.
    Camp S; Zhang L; Krejci E; Dobbertin A; Bernard V; Girard E; Duysen EG; Lockridge O; De Jaco A; Taylor P
    Chem Biol Interact; 2010 Sep; 187(1-3):72-7. PubMed ID: 20153304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Butyrylcholinesterase and acetylcholinesterase activity and quantal transmitter release at normal and acetylcholinesterase knockout mouse neuromuscular junctions.
    Minic J; Chatonnet A; Krejci E; Molgó J
    Br J Pharmacol; 2003 Jan; 138(1):177-87. PubMed ID: 12522088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ventilatory pattern and chemosensitivity in M1 and M3 muscarinic receptor knockout mice.
    Boudinot E; Yamada M; Wess J; Champagnat J; Foutz AS
    Respir Physiol Neurobiol; 2004 Feb; 139(3):237-45. PubMed ID: 15122990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Butyrylcholinesterase and the control of synaptic responses in acetylcholinesterase knockout mice.
    Girard E; Bernard V; Minic J; Chatonnet A; Krejci E; Molgó J
    Life Sci; 2007 May; 80(24-25):2380-5. PubMed ID: 17467011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptic remodeling at the skeletal neuromuscular junction of acetylcholinesterase knockout mice and its physiological relevance.
    Girard E; Barbier J; Chatonnet A; Krejci E; Molgó J
    Chem Biol Interact; 2005 Dec; 157-158():87-96. PubMed ID: 16274683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abundant tissue butyrylcholinesterase and its possible function in the acetylcholinesterase knockout mouse.
    Li B; Stribley JA; Ticu A; Xie W; Schopfer LM; Hammond P; Brimijoin S; Hinrichs SH; Lockridge O
    J Neurochem; 2000 Sep; 75(3):1320-31. PubMed ID: 10936216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced acetylcholine receptor density, morphological remodeling, and butyrylcholinesterase activity can sustain muscle function in acetylcholinesterase knockout mice.
    Adler M; Manley HA; Purcell AL; Deshpande SS; Hamilton TA; Kan RK; Oyler G; Lockridge O; Duysen EG; Sheridan RE
    Muscle Nerve; 2004 Sep; 30(3):317-27. PubMed ID: 15318343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino acid residues involved in the interaction of acetylcholinesterase and butyrylcholinesterase with the carbamates Ro 02-0683 and bambuterol, and with terbutaline.
    Kovarik Z; Radić Z; Grgas B; Skrinjarić-Spoljar M; Reiner E; Simeon-Rudolf V
    Biochim Biophys Acta; 1999 Aug; 1433(1-2):261-71. PubMed ID: 10446376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Mice lacking individual molecular forms of cholinesterases].
    Kučera M; Hrabovská A
    Ceska Slov Farm; 2016; 65(2):52-63. PubMed ID: 27356594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization of butyrylcholinesterase at the neuromuscular junction of normal and acetylcholinesterase knockout mice.
    Blondet B; Carpentier G; Ferry A; Chatonnet A; Courty J
    J Histochem Cytochem; 2010 Dec; 58(12):1075-82. PubMed ID: 20805581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mice heterozygous for AChE are more sensitive to AChE inhibitors but do not respond to BuChE inhibition.
    Mohr F; Zimmermann M; Klein J
    Neuropharmacology; 2013 Apr; 67():37-45. PubMed ID: 23147415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amino acid residues involved in stereoselective inhibition of cholinesterases with bambuterol.
    Bosak A; Gazić I; Vinković V; Kovarik Z
    Arch Biochem Biophys; 2008 Mar; 471(1):72-6. PubMed ID: 18167304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Schwann cells sense and control acetylcholine spillover at the neuromuscular junction by α7 nicotinic receptors and butyrylcholinesterase.
    Petrov KA; Girard E; Nikitashina AD; Colasante C; Bernard V; Nurullin L; Leroy J; Samigullin D; Colak O; Nikolsky E; Plaud B; Krejci E
    J Neurosci; 2014 Sep; 34(36):11870-83. PubMed ID: 25186736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.