BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

537 related articles for article (PubMed ID: 18977375)

  • 1. Development of quantitative structure-activity relationship (QSAR) models to predict the carcinogenic potency of chemicals I. Alternative toxicity measures as an estimator of carcinogenic potency.
    Venkatapathy R; Wang CY; Bruce RM; Moudgal C
    Toxicol Appl Pharmacol; 2009 Jan; 234(2):209-21. PubMed ID: 18977375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling.
    Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF
    Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of quantitative structure-activity relationship (QSAR) models to predict the carcinogenic potency of chemicals. II. Using oral slope factor as a measure of carcinogenic potency.
    Wang NC; Venkatapathy R; Bruce RM; Moudgal C
    Regul Toxicol Pharmacol; 2011 Mar; 59(2):215-26. PubMed ID: 20951756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Are tumor incidence rates from chronic bioassays telling us what we need to know about carcinogens?
    Gaylor DW
    Regul Toxicol Pharmacol; 2005 Mar; 41(2):128-33. PubMed ID: 15698536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of QSAR models for predicting hepatocarcinogenic toxicity of chemicals.
    Massarelli I; Imbriani M; Coi A; Saraceno M; Carli N; Bianucci AM
    Eur J Med Chem; 2009 Sep; 44(9):3658-64. PubMed ID: 19272677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative structure activity relationship for the computational prediction of nitrocompounds carcinogenicity.
    Morales AH; Pérez MA; Combes RD; González MP
    Toxicology; 2006 Mar; 220(1):51-62. PubMed ID: 16414170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative structure-activity relationship modelling of the carcinogenic risk of nitroso compounds using regression analysis and the TOPS-MODE approach.
    Helguera AM; Pérez-Machado G; Cordeiro MN; Combes RD
    SAR QSAR Environ Res; 2010 Apr; 21(3-4):277-304. PubMed ID: 20544552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-activity relationship analysis tools: validation and applicability in predicting carcinogens.
    Mayer J; Cheeseman MA; Twaroski ML
    Regul Toxicol Pharmacol; 2008 Feb; 50(1):50-8. PubMed ID: 18023949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A topological substructural approach applied to the computational prediction of rodent carcinogenicity.
    Helguera AM; Cabrera Pérez MA; González MP; Ruiz RM; González Díaz H
    Bioorg Med Chem; 2005 Apr; 13(7):2477-88. PubMed ID: 15755650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A measure of tumorigenic potency incorporating dose-response shape.
    Meier KL; Bailer AJ; Portier CJ
    Biometrics; 1993 Sep; 49(3):917-26. PubMed ID: 8241378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer-aided rodent carcinogenicity prediction.
    Lagunin AA; Dearden JC; Filimonov DA; Poroikov VV
    Mutat Res; 2005 Oct; 586(2):138-46. PubMed ID: 16112600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of predictive models for nongenotoxic hepatocarcinogenicity using both toxicogenomics and quantitative structure-activity relationships.
    Liu Z; Kelly R; Fang H; Ding D; Tong W
    Chem Res Toxicol; 2011 Jul; 24(7):1062-70. PubMed ID: 21627106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative structure-carcinogenicity relationship for detecting structural alerts in nitroso compounds: species, rat; sex, female; route of administration, gavage.
    Morales Helguera A; Pérez González M; Dias Soeiro Cordeiro MN; Cabrera Pérez MA
    Chem Res Toxicol; 2008 Mar; 21(3):633-42. PubMed ID: 18293904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative structure carcinogenicity relationship for detecting structural alerts in nitroso-compounds.
    Helguera AM; González MP; D S Cordeiro MN; Pérez MA
    Toxicol Appl Pharmacol; 2007 Jun; 221(2):189-202. PubMed ID: 17477948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental design constraints on carcinogenic potency estimates.
    Rieth JP; Starr TB
    J Toxicol Environ Health; 1989; 27(3):287-96. PubMed ID: 2754755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of the oral rat chronic lowest observed adverse effect level model in TOPKAT, a QSAR software package for toxicity prediction.
    Venkatapathy R; Moudgal CJ; Bruce RM
    J Chem Inf Comput Sci; 2004; 44(5):1623-9. PubMed ID: 15446819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting carcinogenicity of diverse chemicals using probabilistic neural network modeling approaches.
    Singh KP; Gupta S; Rai P
    Toxicol Appl Pharmacol; 2013 Oct; 272(2):465-75. PubMed ID: 23856075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemicals classified by IARC: their potency in tests for carcinogenicity in rodents and their genotoxicity and acute toxicity.
    McGregor DB
    IARC Sci Publ; 1992; (116):323-52. PubMed ID: 1428089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An analysis of genetic toxicity, reproductive and developmental toxicity, and carcinogenicity data: II. Identification of genotoxicants, reprotoxicants, and carcinogens using in silico methods.
    Matthews EJ; Kruhlak NL; Cimino MC; Benz RD; Contrera JF
    Regul Toxicol Pharmacol; 2006 Mar; 44(2):97-110. PubMed ID: 16352383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ESP: a method to predict toxicity and pharmacological properties of chemicals using multiple MCASE databases.
    Klopman G; Chakravarti SK; Zhu H; Ivanov JM; Saiakhov RD
    J Chem Inf Comput Sci; 2004; 44(2):704-15. PubMed ID: 15032553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.