These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
332 related articles for article (PubMed ID: 18977420)
81. Susceptibility of the Mediterranean fruit fly (Ceratitis capitata) and the Natal fruit fly (Ceratitis rosa) to entomopathogenic nematodes. Malan AP; Manrakhan A J Invertebr Pathol; 2009 Jan; 100(1):47-9. PubMed ID: 18845153 [TBL] [Abstract][Full Text] [Related]
82. Impacts of fluctuating temperature on the development and infectivity of entomopathogenic nematode Steinernema carpocapsae A10. Bornstein-Forst S; Kiger H; Rector A J Invertebr Pathol; 2005 Feb; 88(2):147-53. PubMed ID: 15766931 [TBL] [Abstract][Full Text] [Related]
83. Pathogenic effect of entomopathogenic nematode-bacterium complexes on terrestrial isopods. Sicard M; Raimond M; Prats O; Lafitte A; Braquart-Varnier C J Invertebr Pathol; 2008 Sep; 99(1):20-7. PubMed ID: 18346756 [TBL] [Abstract][Full Text] [Related]
84. Population and infection dynamics of Daubaylia potomaca (Nematoda: Rhabditida) in Helisoma anceps. Zimmermann MR; Luth KE; Camp LE; Esch GW J Parasitol; 2011 Jun; 97(3):384-8. PubMed ID: 21506762 [TBL] [Abstract][Full Text] [Related]
85. Influence of culture method on Steinernema glaseri lipids. Abu Hatab M; Gaugler R; Ehlers RU J Parasitol; 1998 Apr; 84(2):215-21. PubMed ID: 9576490 [TBL] [Abstract][Full Text] [Related]
86. Modulation of immune responses of Rhynchophorus ferrugineus (Insecta: Coleoptera) induced by the entomopathogenic nematode Steinernema carpocapsae (Nematoda: Rhabditida). Mastore M; Arizza V; Manachini B; Brivio MF Insect Sci; 2015 Dec; 22(6):748-60. PubMed ID: 24846780 [TBL] [Abstract][Full Text] [Related]
87. Spatiotemporal analysis of predation by carabid beetles (Carabidae) on nematode infected and uninfected slugs in the field. Hatteland BA; Haukeland S; Roth S; Brurberg MB; Vaughan IP; Symondson WO PLoS One; 2013; 8(12):e82142. PubMed ID: 24349202 [TBL] [Abstract][Full Text] [Related]
88. Isolation of naturally associated bacteria of necromenic Pristionchus nematodes and fitness consequences. Rae R; Riebesell M; Dinkelacker I; Wang Q; Herrmann M; Weller AM; Dieterich C; Sommer RJ J Exp Biol; 2008 Jun; 211(Pt 12):1927-36. PubMed ID: 18515723 [TBL] [Abstract][Full Text] [Related]
89. The saprophytic fungus Fusarium solani increases the insecticidal efficacy of the entomopathogenic nematode Steinernema diaprepesi. Wu SY; El-Borai FE; Graham JH; Duncan LW J Invertebr Pathol; 2018 Nov; 159():87-94. PubMed ID: 30300629 [TBL] [Abstract][Full Text] [Related]
90. Down-regulation of antibacterial peptide synthesis in an insect model induced by the body-surface of an entomoparasite (Steinernema feltiae). F Brivio M; Moro M; Mastore M Dev Comp Immunol; 2006; 30(7):627-38. PubMed ID: 16368138 [TBL] [Abstract][Full Text] [Related]
91. Involvement of a novel Pseudomonas protegens strain associated with entomopathogenic nematode infective juveniles in insect pathogenesis. Ruiu L; Marche MG; Mura ME; Tarasco E Pest Manag Sci; 2022 Dec; 78(12):5437-5443. PubMed ID: 36057860 [TBL] [Abstract][Full Text] [Related]
92. Reproductive efficiency of entomopathogenic nematodes as scavengers. Are they able to fight for insect's cadavers? Blanco-Pérez R; Bueno-Pallero FÁ; Neto L; Campos-Herrera R J Invertebr Pathol; 2017 Sep; 148():1-9. PubMed ID: 28499929 [TBL] [Abstract][Full Text] [Related]
93. Alternative paths to success in a parasite community: within-host competition can favor higher virulence or direct interference. Bashey F; Hawlena H; Lively CM Evolution; 2013 Mar; 67(3):900-7. PubMed ID: 23461339 [TBL] [Abstract][Full Text] [Related]
94. Identification of two entomopathogenic bacteria from a nematode pathogenic to the Oriental beetle, Blitopertha orientalis. Yi YK; Park HW; Shrestha S; Seo J; Kim YO; Shin CS; Kim Y J Microbiol Biotechnol; 2007 Jun; 17(6):968-78. PubMed ID: 18050915 [TBL] [Abstract][Full Text] [Related]
95. The use of Phasmarhabditis nematodes and metabolites of Xenorhabdus bacteria in slug control. Nermuť J; Konopická J; Weijler V; Půža V Appl Microbiol Biotechnol; 2024 Dec; 108(1):8. PubMed ID: 38165479 [TBL] [Abstract][Full Text] [Related]
96. Environmental factors affecting sexual differentiation in the entomopathogenic nematode Heterorhabditis bacteriophora. Kahel-Raifer H; Glazer I J Exp Zool; 2000 Jul; 287(2):158-66. PubMed ID: 10900435 [TBL] [Abstract][Full Text] [Related]
97. Ecological characterisation of the Colombian entomopathogenic nematode Heterorhabditis sp. SL0708. Mejia-Torres MC; Sáenz A Braz J Biol; 2013 May; 73(2):239-43. PubMed ID: 23917550 [TBL] [Abstract][Full Text] [Related]
98. Photorhabdus: a model for the analysis of pathogenicity and mutualism. Clarke DJ Cell Microbiol; 2008 Nov; 10(11):2159-67. PubMed ID: 18647173 [TBL] [Abstract][Full Text] [Related]
99. A nematode that can manipulate the behaviour of slugs. Morris A; Green M; Martin H; Crossland K; Swaney WT; Williamson SM; Rae R Behav Processes; 2018 Jun; 151():73-80. PubMed ID: 29499346 [TBL] [Abstract][Full Text] [Related]
100. Chemoattraction in Pristionchus nematodes and implications for insect recognition. Hong RL; Sommer RJ Curr Biol; 2006 Dec; 16(23):2359-65. PubMed ID: 17141618 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]