These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 18977497)

  • 1. A mechanistic study on the photodegradation of Irgarol-1051 in natural seawater.
    Lam KH; Lei NY; Tsang VW; Cai Z; Leung KM; Lam MH
    Mar Pollut Bull; 2009 Feb; 58(2):272-9. PubMed ID: 18977497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photosensitized degradation of Irgarol 1051 in water.
    Okamura H; Sugiyama Y
    Chemosphere; 2004 Nov; 57(7):739-43. PubMed ID: 15488937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicities of antifouling biocide Irgarol 1051 and its major degraded product to marine primary producers.
    Zhang AQ; Leung KM; Kwok KW; Bao VW; Lam MH
    Mar Pollut Bull; 2008; 57(6-12):575-86. PubMed ID: 18314144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a new Irgarol-1051 related s-triazine species in coastal waters.
    Lam KH; Cai Z; Wai HY; Tsang VW; Lam MH; Cheung RY; Yu H; Lam PK
    Environ Pollut; 2005 Jul; 136(2):221-30. PubMed ID: 15840530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Occurrence and persistence of antifouling biocide Irgarol 1051 and its main metabolite in the coastal waters of Southern England.
    Zhou JL
    Sci Total Environ; 2008 Nov; 406(1-2):239-46. PubMed ID: 18789489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A study of the partitioning behavior of Irgarol-1051 and its transformation products.
    Lam KH; Wai HY; Leung KM; Tsang VW; Tang CF; Cheung RY; Lam MH
    Chemosphere; 2006 Aug; 64(7):1177-84. PubMed ID: 16403564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of the antifouling compound Irgarol 1051 by manganese peroxidase from the white rot fungus Phanerochaete chrysosporium.
    Ogawa N; Okamura H; Hirai H; Nishida T
    Chemosphere; 2004 Apr; 55(3):487-91. PubMed ID: 14987947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxicities of Irgarol 1051 derivatives, M2 and M3, to two marine diatom species.
    Zhang AQ; Zhou GJ; Lam MHW; Leung KMY
    Ecotoxicol Environ Saf; 2019 Oct; 182():109455. PubMed ID: 31344592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of single and joint toxic effects of two antifouling biocides, their main metabolites and copper using phytoplankton bioassays.
    Gatidou G; Thomaidis NS
    Aquat Toxicol; 2007 Dec; 85(3):184-91. PubMed ID: 17942164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fate and transport of Irgarol 1051 in a modular estuarine mesocosm.
    Sapozhnikova Y; Pennington P; Wirth E; Fulton M
    J Environ Monit; 2009 Apr; 11(4):808-14. PubMed ID: 19557235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Occurrence and distribution of antifouling biocide Irgarol-1051 in coastal waters of Peninsular Malaysia.
    Ali HR; Arifin MM; Sheikh MA; Mohamed Shazili NA; Bachok Z
    Mar Pollut Bull; 2013 May; 70(1-2):253-7. PubMed ID: 23490347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxicities of the degraded mixture of Irgarol 1051 to marine organisms.
    Zhang AQ; Zhou GJ; Lam MHW; Leung KMY
    Chemosphere; 2019 Jun; 225():565-573. PubMed ID: 30901651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring of antifouling booster biocides in water and sediment from the port of Osaka, Japan.
    Harino H; Mori Y; Yamaguchi Y; Shibata K; Senda T
    Arch Environ Contam Toxicol; 2005 Apr; 48(3):303-10. PubMed ID: 15750770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photolysis of atrazine and ametryne herbicides in Barbados sugar cane plantation soils and water.
    McMartin DW; Headley JV; Wood BP; Gillies JA
    J Environ Sci Health B; 2003 May; 38(3):293-303. PubMed ID: 12716047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photodegradation of sulfamethoxazole in various aqueous media: persistence, toxicity and photoproducts assessment.
    Trovó AG; Nogueira RF; Agüera A; Sirtori C; Fernández-Alba AR
    Chemosphere; 2009 Nov; 77(10):1292-8. PubMed ID: 19879626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a new degradation product of the antifouling agent irgarol 1051 in natural samples.
    Ferrer I; Barceló D
    J Chromatogr A; 2001 Aug; 926(1):221-8. PubMed ID: 11554415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Humic-like substances extracted from composts can promote the photodegradation of Irgarol 1051 in solar light.
    Amine-Khodja A; Trubetskaya O; Trubetskoj O; Cavani L; Ciavatta C; Guyot G; Richard C
    Chemosphere; 2006 Feb; 62(6):1021-7. PubMed ID: 16081135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contamination of the coastal waters of Bermuda by organotins and the triazine herbicide Irgarol 1051.
    Connelly DP; Readman JW; Knap AH; Davies J
    Mar Pollut Bull; 2001 May; 42(5):409-14. PubMed ID: 11436822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term effects of the antifouling booster biocide Irgarol 1051 on periphyton, plankton and ecosystem function in freshwater pond mesocosms.
    Mohr S; Schröder H; Feibicke M; Berghahn R; Arp W; Nicklisch A
    Aquat Toxicol; 2008 Nov; 90(2):109-20. PubMed ID: 18817992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antifouling herbicides in the coastal waters of western Japan.
    Okamura H; Aoyama I; Ono Y; Nishida T
    Mar Pollut Bull; 2003; 47(1-6):59-67. PubMed ID: 12787598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.