BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 18978052)

  • 1. Expression and physiological relevance of Agrobacterium tumefaciens phosphatidylcholine biosynthesis genes.
    Klüsener S; Aktas M; Thormann KM; Wessel M; Narberhaus F
    J Bacteriol; 2009 Jan; 191(1):365-74. PubMed ID: 18978052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Virulence of Agrobacterium tumefaciens requires phosphatidylcholine in the bacterial membrane.
    Wessel M; Klüsener S; Gödeke J; Fritz C; Hacker S; Narberhaus F
    Mol Microbiol; 2006 Nov; 62(3):906-15. PubMed ID: 17010159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphatidylcholine biosynthesis and function in bacteria.
    Geiger O; López-Lara IM; Sohlenkamp C
    Biochim Biophys Acta; 2013 Mar; 1831(3):503-13. PubMed ID: 22922101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane-binding mechanism of a bacterial phospholipid N-methyltransferase.
    Danne L; Aktas M; Gleichenhagen J; Grund N; Wagner D; Schwalbe H; Hoffknecht B; Metzler-Nolte N; Narberhaus F
    Mol Microbiol; 2015 Jan; 95(2):313-31. PubMed ID: 25403021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane lipids in Agrobacterium tumefaciens: biosynthetic pathways and importance for pathogenesis.
    Aktas M; Danne L; Möller P; Narberhaus F
    Front Plant Sci; 2014; 5():109. PubMed ID: 24723930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic properties and substrate specificity of a bacterial phosphatidylcholine synthase.
    Aktas M; Köster S; Kizilirmak S; Casanova JC; Betz H; Fritz C; Moser R; Yildiz Ö; Narberhaus F
    FEBS J; 2014 Aug; 281(15):3523-41. PubMed ID: 24931117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic and transcriptomic characterization of a virulence-deficient phosphatidylcholine-negative Agrobacterium tumefaciens mutant.
    Klüsener S; Hacker S; Tsai YL; Bandow JE; Gust R; Lai EM; Narberhaus F
    Mol Genet Genomics; 2010 Jun; 283(6):575-89. PubMed ID: 20437057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphatidylcholine levels in Bradyrhizobium japonicum membranes are critical for an efficient symbiosis with the soybean host plant.
    Minder AC; de Rudder KE; Narberhaus F; Fischer HM; Hennecke H; Geiger O
    Mol Microbiol; 2001 Mar; 39(5):1186-98. PubMed ID: 11251836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathways for phosphatidylcholine biosynthesis in bacteria.
    Martínez-Morales F; Schobert M; López-Lara IM; Geiger O
    Microbiology (Reading); 2003 Dec; 149(Pt 12):3461-3471. PubMed ID: 14663079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Choline uptake in Agrobacterium tumefaciens by the high-affinity ChoXWV transporter.
    Aktas M; Jost KA; Fritz C; Narberhaus F
    J Bacteriol; 2011 Oct; 193(19):5119-29. PubMed ID: 21803998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphatidylcholine biosynthesis and its significance in bacteria interacting with eukaryotic cells.
    Aktas M; Wessel M; Hacker S; Klüsener S; Gleichenhagen J; Narberhaus F
    Eur J Cell Biol; 2010 Dec; 89(12):888-94. PubMed ID: 20656373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brucella abortus synthesizes phosphatidylcholine from choline provided by the host.
    Comerci DJ; Altabe S; de Mendoza D; Ugalde RA
    J Bacteriol; 2006 Mar; 188(5):1929-34. PubMed ID: 16484204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of phosphatidylcholine, a typical eukaryotic phospholipid, is necessary for full virulence of the intracellular bacterial parasite Brucella abortus.
    Conde-Alvarez R; Grilló MJ; Salcedo SP; de Miguel MJ; Fugier E; Gorvel JP; Moriyón I; Iriarte M
    Cell Microbiol; 2006 Aug; 8(8):1322-35. PubMed ID: 16882035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Legionella bozemanae synthesizes phosphatidylcholine from exogenous choline.
    Palusinska-Szysz M; Janczarek M; Kalitynski R; Dawidowicz AL; Russa R
    Microbiol Res; 2011 Feb; 166(2):87-98. PubMed ID: 20338739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro characterization of the enzyme properties of the phospholipid N-methyltransferase PmtA from Agrobacterium tumefaciens.
    Aktas M; Narberhaus F
    J Bacteriol; 2009 Apr; 191(7):2033-41. PubMed ID: 19181804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissection of membrane-binding and -remodeling regions in two classes of bacterial phospholipid N-methyltransferases.
    Danne L; Aktas M; Grund N; Bentler T; Erdmann R; Narberhaus F
    Biochim Biophys Acta Biomembr; 2017 Dec; 1859(12):2279-2288. PubMed ID: 28912104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple phospholipid N-methyltransferases with distinct substrate specificities are encoded in Bradyrhizobium japonicum.
    Hacker S; Sohlenkamp C; Aktas M; Geiger O; Narberhaus F
    J Bacteriol; 2008 Jan; 190(2):571-80. PubMed ID: 17993534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorus limitation enhances biofilm formation of the plant pathogen Agrobacterium tumefaciens through the PhoR-PhoB regulatory system.
    Danhorn T; Hentzer M; Givskov M; Parsek MR; Fuqua C
    J Bacteriol; 2004 Jul; 186(14):4492-501. PubMed ID: 15231781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Opine biosynthesis and catabolism genes of Agrobacterium tumefaciens and Agrobacterium rhizogenes].
    Vladimirov IA; Matveeva TV; Lutova LA
    Genetika; 2015 Feb; 51(2):137-46. PubMed ID: 25966579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two Distinct Cardiolipin Synthases Operate in Agrobacterium tumefaciens.
    Czolkoss S; Fritz C; Hölzl G; Aktas M
    PLoS One; 2016; 11(7):e0160373. PubMed ID: 27472399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.