BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

429 related articles for article (PubMed ID: 18978589)

  • 1. Real-time monitoring of mitochondrial NADH and microcirculatory blood flow in the spinal cord.
    Simonovich M; Barbiro-Michaely E; Mayevsky A
    Spine (Phila Pa 1976); 2008 Nov; 33(23):2495-502. PubMed ID: 18978589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time direct measurement of spinal cord blood flow at the site of compression: relationship between blood flow recovery and motor deficiency in spinal cord injury.
    Hamamoto Y; Ogata T; Morino T; Hino M; Yamamoto H
    Spine (Phila Pa 1976); 2007 Aug; 32(18):1955-62. PubMed ID: 17700440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Renal viability evaluated by the multiprobe assembly: a unique tool for the assessment of renal ischemic injury.
    Luger-Hamer M; Barbiro-Michaely E; Sonn J; Mayevsky A
    Nephron Clin Pract; 2009; 111(1):c29-38. PubMed ID: 19052468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real time monitoring of rat liver energy state during ischemia.
    Barbiro E; Zurovsky Y; Mayevsky A
    Microvasc Res; 1998 Nov; 56(3):253-60. PubMed ID: 9828163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrathecal adenosine increases spinal cord blood flow in the rat: measurements with the laser-Doppler flowmetry technique.
    Rane K; Segerdahl M; Karlsten R
    Acta Anaesthesiol Scand; 2004 Nov; 48(10):1249-55. PubMed ID: 15504184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effects of norepinephrine on brain and other less vital organs detected by a multisite multiparametric monitoring system.
    Kraut A; Barbiro-Michaely E; Mayevsky A
    Med Sci Monit; 2004 Jul; 10(7):BR215-20. PubMed ID: 15232495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient spinal ischemia in rat: characterization of spinal cord blood flow, extracellular amino acid release, and concurrent histopathological damage.
    Marsala M; Sorkin LS; Yaksh TL
    J Cereb Blood Flow Metab; 1994 Jul; 14(4):604-14. PubMed ID: 8014207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects on spinal cord blood flow and neurologic function secondary to interruption of bilateral segmental arteries which supply the artery of Adamkiewicz: an experimental study using a dog model.
    Kato S; Kawahara N; Tomita K; Murakami H; Demura S; Fujimaki Y
    Spine (Phila Pa 1976); 2008 Jun; 33(14):1533-41. PubMed ID: 18520634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time monitoring of spinal cord blood flow with a novel sensor mounted on a cerebrospinal fluid drainage catheter in an animal model.
    Hayatsu Y; Kawamoto S; Matsunaga T; Haga Y; Saiki Y
    J Thorac Cardiovasc Surg; 2014 Oct; 148(4):1726-31. PubMed ID: 24836994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Blood flow, CO2 response and autoregulation in the rat spinal cord by laser-Doppler flowmetry and hydrogen clearance].
    Wang R; Ehara K; Fujita K; Tamaki N; Matsumoto S
    No To Shinkei; 1991 Jul; 43(7):649-55. PubMed ID: 1832914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial function and cerebral blood flow variable responses to middle cerebral artery occlusion.
    Livnat A; Barbiro-Michaely E; Mayevsky A
    J Neurosci Methods; 2010 Apr; 188(1):76-82. PubMed ID: 20109493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficacy and vasodilatory benefit of magnesium prophylaxis for protection against spinal cord ischemia.
    Kohno H; Ishida A; Imamaki M; Shimura H; Miyazaki M
    Ann Vasc Surg; 2007 May; 21(3):352-9. PubMed ID: 17484971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effects of megadose methylprednisolone therapy on acute spinal cord injury in rats].
    Imamura H
    Hokkaido Igaku Zasshi; 1994 Mar; 69(2):236-47. PubMed ID: 8157249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How many ligations of bilateral segmental arteries cause ischemic spinal cord dysfunction? An experimental study using a dog model.
    Fujimaki Y; Kawahara N; Tomita K; Murakami H; Ueda Y
    Spine (Phila Pa 1976); 2006 Oct; 31(21):E781-9. PubMed ID: 17023839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Responses of dorsal spinal cord blood flow to innocuous cutaneous stimulation in anesthetized rats.
    Kurosawa M; Watanabe O; Maruyama H; Budgell B
    Auton Neurosci; 2006 Jun; 126-127():185-92. PubMed ID: 16679069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of supraspinal and spinal structures to the responses of dorsal spinal cord blood flow to innocuous cutaneous brushing in rats.
    Kurosawa M; Toda H; Watanabe O; Budgell B
    Auton Neurosci; 2007 Oct; 136(1-2):96-9. PubMed ID: 17507293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of NADH fluorescence to determine mitochondrial function in vivo.
    Mayevsky A; Barbiro-Michaely E
    Int J Biochem Cell Biol; 2009 Oct; 41(10):1977-88. PubMed ID: 19703658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spinal cord blood flow in response to focal compression.
    Hitchon PW; Dyste GN; Osenbach RK; Todd MM; Yamada T; Jensen AE
    J Spinal Disord; 1990 Sep; 3(3):210-9. PubMed ID: 2134431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Responses of dorsal spinal cord blood flow to noxious mechanical stimulation of the skin in anesthetized rats.
    Toda H; Maruyama H; Budgell B; Kurosawa M
    J Physiol Sci; 2008 Aug; 58(4):263-70. PubMed ID: 18598593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical levels of spinal cord blood flow and duration of ischemia for the acute recovery of segmental spinal cord responses in cats.
    Kolenda H; Steffens H; Gefeller O; Hagenah J; Schomburg ED
    J Spinal Disord; 1997 Aug; 10(4):288-95. PubMed ID: 9278912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.