BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 18978864)

  • 1. Transport equation for the time correlation function of scattered field in dynamic turbid media.
    Pierrat R
    J Opt Soc Am A Opt Image Sci Vis; 2008 Nov; 25(11):2840-5. PubMed ID: 18978864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequency domain photon migration in the delta- P1 approximation: analysis of ballistic, transport, and diffuse regimes.
    You JS; Hayakawa CK; Venugopalan V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021903. PubMed ID: 16196600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffusing-wave spectroscopy from head-like tissue phantoms: influence of a non-scattering layer.
    Jaillon F; Skipetrov SE; Li J; Dietsche G; Maret G; Gisler T
    Opt Express; 2006 Oct; 14(22):10181-94. PubMed ID: 19529414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photon migration in turbid media using a cumulant approximation to radiative transfer.
    Xu M; Cai W; Lax M; Alfano RR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):066609. PubMed ID: 12188853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation transfer equation for ultrasound-modulated multiply scattered light.
    Sakadzić S; Wang LV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):036618. PubMed ID: 17025775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An overview of methods for deriving the radiative transfer theory from the Maxwell equations. II: Approach based on the Dyson and Bethe-Salpeter equations.
    Doicu A; Mishchenko MI
    J Quant Spectrosc Radiat Transf; 2019 Feb; 224():25-36. PubMed ID: 30713354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusion of monochromatic classical waves.
    Gerritsen S; Bauer GE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016618. PubMed ID: 16486306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation gating quantifies the optical properties of dynamic media in transmission.
    Borycki D; Kholiqov O; Srinivasan VJ
    Opt Lett; 2018 Dec; 43(23):5881-5884. PubMed ID: 30499965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions.
    Tarvainen T; Vauhkonen M; Kolehmainen V; Arridge SR; Kaipio JP
    Phys Med Biol; 2005 Oct; 50(20):4913-30. PubMed ID: 16204880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two electric field Monte Carlo models of coherent backscattering of polarized light.
    Doronin A; Radosevich AJ; Backman V; Meglinski I
    J Opt Soc Am A Opt Image Sci Vis; 2014 Nov; 31(11):2394-400. PubMed ID: 25401350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Massively parallel simulator of optical coherence tomography of inhomogeneous turbid media.
    Malektaji S; Lima IT; Escobar I MR; Sherif SS
    Comput Methods Programs Biomed; 2017 Oct; 150():97-105. PubMed ID: 28859833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling boundary measurements of scattered light using the corrected diffusion approximation.
    Lehtikangas O; Tarvainen T; Kim AD
    Biomed Opt Express; 2012 Mar; 3(3):552-71. PubMed ID: 22435102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wave transport in random media: the ballistic to diffusive transition.
    Zhang ZQ; Jones IP; Schriemer HP; Page JH; Weitz DA; Sheng P
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Oct; 60(4 Pt B):4843-50. PubMed ID: 11970349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling focusing Gaussian beams in a turbid medium with Monte Carlo simulations.
    Hokr BH; Bixler JN; Elpers G; Zollars B; Thomas RJ; Yakovlev VV; Scully MO
    Opt Express; 2015 Apr; 23(7):8699-705. PubMed ID: 25968708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transmission of a pulsed polarized light beam through thick turbid media: numerical results.
    Bruscaglioni P; Zaccanti G; Wei Q
    Appl Opt; 1993 Oct; 32(30):6142-50. PubMed ID: 20856443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absorption effects in diffusing wave spectroscopy.
    Sarmiento-Gomez E; Morales-Cruzado B; Castillo R
    Appl Opt; 2014 Jul; 53(21):4675-82. PubMed ID: 25090203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beyond the diffusing-wave spectroscopy model for the temporal fluctuations of scattered light.
    Carminati R; Elaloufi R; Greffet JJ
    Phys Rev Lett; 2004 May; 92(21):213903. PubMed ID: 15245283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamical second-order Bethe-Salpeter equation kernel: a method for electronic excitation beyond the adiabatic approximation.
    Zhang D; Steinmann SN; Yang W
    J Chem Phys; 2013 Oct; 139(15):154109. PubMed ID: 24160502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical optimal modulation frequencies for scattering parameter estimation and ballistic photon filtering in diffusing media.
    Panigrahi S; Fade J; Ramachandran H; Alouini M
    Opt Express; 2016 Jul; 24(14):16066-83. PubMed ID: 27410875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Location of the effective diffusing-photon source in a strongly scattering medium.
    Kostko AF; Pavlov VA
    Appl Opt; 1997 Oct; 36(30):7577-82. PubMed ID: 18264271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.