These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 18978993)

  • 1. Dissection of organizer and animal pole explants from Xenopus laevis embryos and assembly of a cell adhesion assay.
    Ogata S; Cho KW
    J Vis Exp; 2007; (3):187. PubMed ID: 18978993
    [No Abstract]   [Full Text] [Related]  

  • 2. Amphibian organizer activity.
    Niehrs C
    Methods Mol Biol; 2000; 137():179-83. PubMed ID: 10948537
    [No Abstract]   [Full Text] [Related]  

  • 3. Comparison of induction during development between Xenopus tropicalis and Xenopus laevis.
    Sedohara A; Suzawa K; Asashima M
    Int J Dev Biol; 2006; 50(4):385-92. PubMed ID: 16525933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental embryological methods for analysis of neural induction in the amphibian.
    Keller R; Poznanski A; Elul T
    Methods Mol Biol; 2008; 461():405-46. PubMed ID: 19030815
    [No Abstract]   [Full Text] [Related]  

  • 5. Cdc42 Effector Protein 2 (XCEP2) is required for normal gastrulation and contributes to cellular adhesion in Xenopus laevis.
    Nelson KK; Nelson RW
    BMC Dev Biol; 2004 Oct; 4():13. PubMed ID: 15473906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Consistent left-right asymmetry cannot be established by late organizers in Xenopus unless the late organizer is a conjoined twin.
    Vandenberg LN; Levin M
    Development; 2010 Apr; 137(7):1095-105. PubMed ID: 20215347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary origins of blastoporal expression and organizer activity of the vertebrate gastrula organizer gene lhx1 and its ancient metazoan paralog lhx3.
    Yasuoka Y; Kobayashi M; Kurokawa D; Akasaka K; Saiga H; Taira M
    Development; 2009 Jun; 136(12):2005-14. PubMed ID: 19439497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissection and fixation of large milkweed bug (Oncopeltus) embryos.
    Liu P; Kaufman TC
    Cold Spring Harb Protoc; 2009 Aug; 2009(8):pdb.prot5261. PubMed ID: 20147237
    [No Abstract]   [Full Text] [Related]  

  • 9. Regulation of Xenopus embryonic cell adhesion by the small GTPase, rac.
    Hens MD; Nikolic I; Woolcock CM
    Biochem Biophys Res Commun; 2002 Nov; 298(3):364-70. PubMed ID: 12413949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the nature and function of organizers.
    Martinez Arias A; Steventon B
    Development; 2018 Mar; 145(5):. PubMed ID: 29523654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methods for embryo dissociation and analysis of cell adhesion.
    McClay DR
    Methods Cell Biol; 2004; 74():311-29. PubMed ID: 15575613
    [No Abstract]   [Full Text] [Related]  

  • 12. Mesoderm induction in Xenopus. Oocyte expression system and animal cap assay.
    Yao J; Kessler DS
    Methods Mol Biol; 2000; 137():169-78. PubMed ID: 10948536
    [No Abstract]   [Full Text] [Related]  

  • 13. Tracking the movements that shape an embryo.
    Vogel G
    Science; 2000 Apr; 288(5463):86-7. PubMed ID: 10766642
    [No Abstract]   [Full Text] [Related]  

  • 14. The role of vertical and planar signals during the early steps of neural induction.
    Grunz H; Schüren C; Richter K
    Int J Dev Biol; 1995 Jun; 39(3):539-43. PubMed ID: 7577445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle specification in the Xenopus laevis gastrula-stage embryo.
    Wunderlich K; Gustin JK; Domingo CR
    Dev Dyn; 2005 Aug; 233(4):1348-58. PubMed ID: 15965978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spemann's organizer and self-regulation in amphibian embryos.
    De Robertis EM
    Nat Rev Mol Cell Biol; 2006 Apr; 7(4):296-302. PubMed ID: 16482093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Did the first chordates organize without the organizer?
    Kourakis MJ; Smith WC
    Trends Genet; 2005 Sep; 21(9):506-10. PubMed ID: 16023252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional domains of the LIM homeodomain protein Xlim-1 involved in negative regulation, transactivation, and axis formation in Xenopus embryos.
    Hiratani I; Mochizuki T; Tochimoto N; Taira M
    Dev Biol; 2001 Jan; 229(2):456-67. PubMed ID: 11203702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell-autonomous and inductive processes among three embryonic domains control dorsal-ventral and anterior-posterior development of Xenopus laevis.
    Sakai M
    Dev Growth Differ; 2008 Jan; 50(1):49-62. PubMed ID: 17999689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wound healing ability of Xenopus laevis embryos. I. Rapid wound closure achieved by bisectional half embryos.
    Yoshii Y; Noda M; Matsuzaki T; Ihara S
    Dev Growth Differ; 2005 Oct; 47(8):553-61. PubMed ID: 16287486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.