These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 18979023)
1. Population replacement strategies for controlling vector populations and the use of Wolbachia pipientis for genetic drive. Rasgon J J Vis Exp; 2007; (5):225. PubMed ID: 18979023 [TBL] [Abstract][Full Text] [Related]
2. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. McMeniman CJ; Lane RV; Cass BN; Fong AW; Sidhu M; Wang YF; O'Neill SL Science; 2009 Jan; 323(5910):141-4. PubMed ID: 19119237 [TBL] [Abstract][Full Text] [Related]
3. Wolbachia pipientis: an expanding bag of tricks to explore for disease control. Cook PE; McGraw EA Trends Parasitol; 2010 Aug; 26(8):373-5. PubMed ID: 20647151 [TBL] [Abstract][Full Text] [Related]
4. Using bacteria to treat diseases. Caragata EP; Walker T Expert Opin Biol Ther; 2012 Jun; 12(6):701-12. PubMed ID: 22500583 [TBL] [Abstract][Full Text] [Related]
5. Wolbachia as a potential tool for suppressing filarial transmission. Townson H Ann Trop Med Parasitol; 2002 Dec; 96 Suppl 2():S117-27. PubMed ID: 12625925 [TBL] [Abstract][Full Text] [Related]
6. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Moreira LA; Iturbe-Ormaetxe I; Jeffery JA; Lu G; Pyke AT; Hedges LM; Rocha BC; Hall-Mendelin S; Day A; Riegler M; Hugo LE; Johnson KN; Kay BH; McGraw EA; van den Hurk AF; Ryan PA; O'Neill SL Cell; 2009 Dec; 139(7):1268-78. PubMed ID: 20064373 [TBL] [Abstract][Full Text] [Related]
7. Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Xi Z; Khoo CC; Dobson SL Science; 2005 Oct; 310(5746):326-8. PubMed ID: 16224027 [TBL] [Abstract][Full Text] [Related]
9. Using predictive models to optimize Wolbachia-based strategies for vector-borne disease control. Rasgon JL Adv Exp Med Biol; 2008; 627():114-25. PubMed ID: 18510019 [TBL] [Abstract][Full Text] [Related]
10. Wolbachia and the biological control of mosquito-borne disease. Iturbe-Ormaetxe I; Walker T; O' Neill SL EMBO Rep; 2011 Jun; 12(6):508-18. PubMed ID: 21546911 [TBL] [Abstract][Full Text] [Related]
11. Constraints on the use of lifespan-shortening Wolbachia to control dengue fever. Schraiber JG; Kaczmarczyk AN; Kwok R; Park M; Silverstein R; Rutaganira FU; Aggarwal T; Schwemmer MA; Hom CL; Grosberg RK; Schreiber SJ J Theor Biol; 2012 Mar; 297():26-32. PubMed ID: 22192469 [TBL] [Abstract][Full Text] [Related]
12. What ails Wolbachia transinfection to control disease vectors? Sabesan S; Jambulingam P Trends Parasitol; 2012 Jan; 28(1):1-2. PubMed ID: 22079163 [No Abstract] [Full Text] [Related]
13. Can Anopheles gambiae be infected with Wolbachia pipientis? Insights from an in vitro system. Rasgon JL; Ren X; Petridis M Appl Environ Microbiol; 2006 Dec; 72(12):7718-22. PubMed ID: 17028229 [TBL] [Abstract][Full Text] [Related]
14. From population structure to genetically-engineered vectors: new ways to control vector-borne diseases? Sparagano OA; De Luna CJ Infect Genet Evol; 2008 Jul; 8(4):520-5. PubMed ID: 17560836 [TBL] [Abstract][Full Text] [Related]
15. Strategies of the home-team: symbioses exploited for vector-borne disease control. Rio RV; Hu Y; Aksoy S Trends Microbiol; 2004 Jul; 12(7):325-36. PubMed ID: 15223060 [TBL] [Abstract][Full Text] [Related]
16. A computer simulation model of Wolbachia invasion for disease vector population modification. Guevara-Souza M; Vallejo EE BMC Bioinformatics; 2015 Oct; 16():317. PubMed ID: 26438427 [TBL] [Abstract][Full Text] [Related]
17. The Impact of Wolbachia on Virus Infection in Mosquitoes. Johnson KN Viruses; 2015 Nov; 7(11):5705-17. PubMed ID: 26556361 [TBL] [Abstract][Full Text] [Related]