These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 1897905)

  • 1. Postnatal development of plasma amino acids in hyperphagic rats.
    Salvadó MJ; Segués T; Arola L
    Ann Nutr Metab; 1991; 35(4):242-8. PubMed ID: 1897905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The plasma amino acid response to cafeteria feeding in the rat: influence of hyperphagia, sucrose intake, and exercise.
    Calles-Escandon J; Cunningham J; Felig P
    Metabolism; 1984 Apr; 33(4):364-8. PubMed ID: 6584707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein and amino acid intake in cafeteria fed obese rats.
    Lladó I; Picó C; Palou A; Pons A
    Physiol Behav; 1995 Sep; 58(3):513-9. PubMed ID: 8587959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy intake of rats fed a cafeteria diet.
    Prats E; Monfar M; Castellà J; Iglesias R; Alemany M
    Physiol Behav; 1989 Feb; 45(2):263-72. PubMed ID: 2756013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasma amino acids in hyperphagic pups subjected to a glucose gavage.
    Salvadó MJ; Arola L
    Rev Esp Fisiol; 1994 Jun; 50(2):117-23. PubMed ID: 7800914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Body weight and brown fat activity in hyperphagic cafeteria-fed female rats and their offspring.
    Rothwell NJ; Stock MJ
    Biol Neonate; 1986; 49(5):284-91. PubMed ID: 3459554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The plasma amino acid response to cafeteria feeding and essential-amino acid gavage in weaning rats.
    Salvadó MJ; Arola L
    Biochem Mol Biol Int; 1993 Mar; 29(4):613-20. PubMed ID: 8098240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postnatal development of amino acid metabolism enzymes in the liver and muscle of 'cafeteria' rats.
    Salvadó J; Arola L; Alemany M
    Biochem Int; 1986 Jul; 13(1):115-21. PubMed ID: 2875717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sustained changes in blood alpha amino nitrogen compartmentation during recovery from cafeteria feeding in rats.
    Picó C; Pons A; Gianotti M; Palou A
    Arch Int Physiol Biochim Biophys; 1991 Aug; 99(4):345-8. PubMed ID: 1723326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dietary amino acid balances in young Wistar rats fed a cafeteria diet.
    Esteve M; Rafecas I; Fernández-López JA; Remesar X; Alemany M
    Biochem Mol Biol Int; 1993 Apr; 29(6):1069-81. PubMed ID: 8330015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurological and stress related effects of shifting obese rats from a palatable diet to chow and lean rats from chow to a palatable diet.
    South T; Westbrook F; Morris MJ
    Physiol Behav; 2012 Feb; 105(4):1052-7. PubMed ID: 22155008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamine force-feeding effect on plasma amino-acid concentrations in growing rats fed a cafeteria diet.
    Salvadó MJ; Arola LI
    Reprod Nutr Dev; 1994; 34(2):165-73. PubMed ID: 8179816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of long-term cycling between palatable cafeteria diet and regular chow on intake, eating patterns, and response to saccharin and sucrose.
    Martire SI; Westbrook RF; Morris MJ
    Physiol Behav; 2015 Feb; 139():80-8. PubMed ID: 25446218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasma amino acids of lean and obese Zucker rats subjected to a cafeteria diet after weaning.
    Rafecas I; Esteve M; Remesar X; Alemany M
    Biochem Int; 1991 Dec; 25(5):797-806. PubMed ID: 1804100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extended exposure to a palatable cafeteria diet alters gene expression in brain regions implicated in reward, and withdrawal from this diet alters gene expression in brain regions associated with stress.
    Martire SI; Maniam J; South T; Holmes N; Westbrook RF; Morris MJ
    Behav Brain Res; 2014 May; 265():132-41. PubMed ID: 24583192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of a constant T3 level and thermoneutrality in diet-induced hyperphagia.
    Abraham G; Falcou R; Rozen R; Mandenoff A; Autissier N; Apfelbaum M
    Horm Metab Res; 1987 Mar; 19(3):96-100. PubMed ID: 3471698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decreased urea synthesis in cafeteria-diet-induced obesity in the rat.
    Barber T; Viña JR; Viña J; Cabo J
    Biochem J; 1985 Sep; 230(3):675-81. PubMed ID: 4062872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decreased pituitary growth hormone response to growth hormone-releasing factor in cafeteria-fed rats: dietary and obesity effects.
    Renier G; Gaudreau P; Hajjad H; Deslauriers N; Houde-Nadeau M; Brazeau P
    Neuroendocrinology; 1990 Sep; 52(3):284-90. PubMed ID: 2145525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy density in cafeteria diet induced hyperphagia in the rat.
    Shafat A; Murray B; Rumsey D
    Appetite; 2009 Feb; 52(1):34-8. PubMed ID: 18680774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of cafeteria diet induced obesity on rat blood amino acid compartmentation.
    Gianotti M; Roca P; Palou A
    Arch Int Physiol Biochim; 1990 Aug; 98(4):155-61. PubMed ID: 1707611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.