These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 18979065)

  • 1. Use of quantitative (1)H NMR chemical shift changes for ligand docking into barnase.
    Cioffi M; Hunter CA; Packer MJ; Pandya MJ; Williamson MP
    J Biomol NMR; 2009 Jan; 43(1):11-9. PubMed ID: 18979065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subsite binding in an RNase: structure of a barnase-tetranucleotide complex at 1.76-A resolution.
    Buckle AM; Fersht AR
    Biochemistry; 1994 Feb; 33(7):1644-53. PubMed ID: 8110767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and dynamics of barnase complexed with 3'-GMP studied by NMR spectroscopy.
    Meiering EM; Bycroft M; Lubienski MJ; Fersht AR
    Biochemistry; 1993 Oct; 32(41):10975-87. PubMed ID: 8218163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pressure-dependent structure changes in barnase on ligand binding reveal intermediate rate fluctuations.
    Wilton DJ; Kitahara R; Akasaka K; Pandya MJ; Williamson MP
    Biophys J; 2009 Sep; 97(5):1482-90. PubMed ID: 19720037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Propagation of dynamic changes in barnase upon binding of barstar: an NMR and computational study.
    Zhuravleva A; Korzhnev DM; Nolde SB; Kay LE; Arseniev AS; Billeter M; Orekhov VY
    J Mol Biol; 2007 Apr; 367(4):1079-92. PubMed ID: 17306298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of the barstar binding site of barnase by NMR spectroscopy and hydrogen-deuterium exchange.
    Jones DN; Bycroft M; Lubienski MJ; Fersht AR
    FEBS Lett; 1993 Sep; 331(1-2):165-72. PubMed ID: 8405399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of phosphate binding in the active site of barnase by site-directed mutagenesis and NMR.
    Meiering EM; Bycroft M; Fersht AR
    Biochemistry; 1991 Nov; 30(47):11348-56. PubMed ID: 1958671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of a barnase-d(GpC) complex at 1.9 A resolution.
    Baudet S; Janin J
    J Mol Biol; 1991 May; 219(1):123-32. PubMed ID: 2023257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution structure of an O6-[4-oxo-4-(3-pyridyl)butyl]guanine adduct in an 11 mer DNA duplex: evidence for formation of a base triplex.
    Peterson LA; Vu C; Hingerty BE; Broyde S; Cosman M
    Biochemistry; 2003 Nov; 42(45):13134-44. PubMed ID: 14609323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of protein-ligand binding modes using complexation-induced changes in (1)h NMR chemical shift.
    Cioffi M; Hunter CA; Packer MJ; Spitaleri A
    J Med Chem; 2008 Apr; 51(8):2512-7. PubMed ID: 18366177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of protein-ligand docking with simulated chemical shift perturbations.
    Ten Brink T; Aguirre C; Exner TE; Krimm I
    J Chem Inf Model; 2015 Feb; 55(2):275-83. PubMed ID: 25357133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial localization of ligand binding sites from electron current density surfaces calculated from NMR chemical shift perturbations.
    McCoy MA; Wyss DF
    J Am Chem Soc; 2002 Oct; 124(39):11758-63. PubMed ID: 12296743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shift in nucleotide conformational equilibrium contributes to increased rate of catalysis of GpAp versus GpA in barnase.
    Giraldo J; De Maria L; Wodak SJ
    Proteins; 2004 Aug; 56(2):261-76. PubMed ID: 15211510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel binding interactions of the DNA fragment d(pGpG) cross-linked by the antitumor active compound tetrakis(mu-carboxylato)dirhodium(II,II).
    Chifotides HT; Koshlap KM; PĂ©rez LM; Dunbar KR
    J Am Chem Soc; 2003 Sep; 125(35):10714-24. PubMed ID: 12940757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculation of z-coordinates and orientational restraints using a metal binding tag.
    Gaponenko V; Dvoretsky A; Walsby C; Hoffman BM; Rosevear PR
    Biochemistry; 2000 Dec; 39(49):15217-24. PubMed ID: 11106501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational differences in liganded and unliganded states of Galectin-3.
    Umemoto K; Leffler H; Venot A; Valafar H; Prestegard JH
    Biochemistry; 2003 Apr; 42(13):3688-95. PubMed ID: 12667058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Backbone chemical shift assignments of the LexA catalytic domain in its active conformation.
    Okon M; Pfuetzner RA; Vuckovic M; Little JW; Strynadka NC; McIntosh LP
    J Biomol NMR; 2005 Apr; 31(4):371-2. PubMed ID: 15929009
    [No Abstract]   [Full Text] [Related]  

  • 18. NMR backbone assignment of a protein kinase catalytic domain by a combination of several approaches: application to the catalytic subunit of cAMP-dependent protein kinase.
    Langer T; Vogtherr M; Elshorst B; Betz M; Schieborr U; Saxena K; Schwalbe H
    Chembiochem; 2004 Nov; 5(11):1508-16. PubMed ID: 15481030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrepancies between the NMR and X-ray structures of uncomplexed barstar: analysis suggests that packing densities of protein structures determined by NMR are unreliable.
    Ratnaparkhi GS; Ramachandran S; Udgaonkar JB; Varadarajan R
    Biochemistry; 1998 May; 37(19):6958-66. PubMed ID: 9578582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 1H NMR characterization of the solution active site structure of substrate-bound, cyanide-inhibited heme oxygenase from Neisseria meningitidis: comparison to crystal structures.
    Liu Y; Zhang X; Yoshida T; La Mar GN
    Biochemistry; 2004 Aug; 43(31):10112-26. PubMed ID: 15287739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.