These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 18979168)
1. Structural model of the CopA copper ATPase of Enterococcus hirae based on chemical cross-linking. Lübben M; Portmann R; Kock G; Stoll R; Young MM; Solioz M Biometals; 2009 Apr; 22(2):363-75. PubMed ID: 18979168 [TBL] [Abstract][Full Text] [Related]
2. Structure of the actuator domain from the Archaeoglobus fulgidus Cu(+)-ATPase. Sazinsky MH; Agarwal S; Argüello JM; Rosenzweig AC Biochemistry; 2006 Aug; 45(33):9949-55. PubMed ID: 16906753 [TBL] [Abstract][Full Text] [Related]
3. The structure and function of heavy metal transport P1B-ATPases. Argüello JM; Eren E; González-Guerrero M Biometals; 2007 Jun; 20(3-4):233-48. PubMed ID: 17219055 [TBL] [Abstract][Full Text] [Related]
4. Functional roles of metal binding domains of the Archaeoglobus fulgidus Cu(+)-ATPase CopA. Mandal AK; Argüello JM Biochemistry; 2003 Sep; 42(37):11040-7. PubMed ID: 12974640 [TBL] [Abstract][Full Text] [Related]
5. Copper(I) interaction with model peptides of WD6 and TM6 domains of Wilson ATPase: regulatory and mechanistic implications. Myari A; Hadjiliadis N; Fatemi N; Sarkar B J Inorg Biochem; 2004 Sep; 98(9):1483-94. PubMed ID: 15337600 [TBL] [Abstract][Full Text] [Related]
6. Independent evolution of heavy metal-associated domains in copper chaperones and copper-transporting atpases. Jordan IK; Natale DA; Koonin EV; Galperin MY J Mol Evol; 2001 Dec; 53(6):622-33. PubMed ID: 11677622 [TBL] [Abstract][Full Text] [Related]
7. Interaction of the CopZ copper chaperone with the CopA copper ATPase of Enterococcus hirae assessed by surface plasmon resonance. Multhaup G; Strausak D; Bissig KD; Solioz M Biochem Biophys Res Commun; 2001 Oct; 288(1):172-7. PubMed ID: 11594769 [TBL] [Abstract][Full Text] [Related]
8. Solution structure of the N-terminal domain of a potential copper-translocating P-type ATPase from Bacillus subtilis in the apo and Cu(I) loaded states. Banci L; Bertini I; Ciofi-Baffoni S; D'Onofrio M; Gonnelli L; Marhuenda-Egea FC; Ruiz-Dueñas FJ J Mol Biol; 2002 Mar; 317(3):415-29. PubMed ID: 11922674 [TBL] [Abstract][Full Text] [Related]
9. Purification and functional analysis of the copper ATPase CopA of Enterococcus hirae. Wunderli-Ye H; Solioz M Biochem Biophys Res Commun; 2001 Jan; 280(3):713-9. PubMed ID: 11162579 [TBL] [Abstract][Full Text] [Related]
10. Primary structure of two P-type ATPases involved in copper homeostasis in Enterococcus hirae. Odermatt A; Suter H; Krapf R; Solioz M J Biol Chem; 1993 Jun; 268(17):12775-9. PubMed ID: 8048974 [TBL] [Abstract][Full Text] [Related]
11. Inter-domain motions of the N-domain of the KdpFABC complex, a P-type ATPase, are not driven by ATP-induced conformational changes. Haupt M; Bramkamp M; Coles M; Altendorf K; Kessler H J Mol Biol; 2004 Oct; 342(5):1547-58. PubMed ID: 15364580 [TBL] [Abstract][Full Text] [Related]
12. Copper chaperone cycling and degradation in the regulation of the cop operon of Enterococcus hirae. Magnani D; Solioz M Biometals; 2005 Aug; 18(4):407-12. PubMed ID: 16158233 [TBL] [Abstract][Full Text] [Related]
13. Membrane structure of CtrA3, a copper-transporting P-type-ATPase from Aquifex aeolicus. Chintalapati S; Al Kurdi R; van Scheltinga AC; Kühlbrandt W J Mol Biol; 2008 May; 378(3):581-95. PubMed ID: 18374940 [TBL] [Abstract][Full Text] [Related]
14. Structure and assembly of the catalytic region of human complement protease C1r: a three-dimensional model based on chemical cross-linking and homology modeling. Lacroix M; Rossi V; Gaboriaud C; Chevallier S; Jaquinod M; Thielens NM; Gagnon J; Arlaud GJ Biochemistry; 1997 May; 36(21):6270-82. PubMed ID: 9174342 [TBL] [Abstract][Full Text] [Related]
15. The Enterococcus hirae paradigm of copper homeostasis: copper chaperone turnover, interactions, and transactions. Lu ZH; Dameron CT; Solioz M Biometals; 2003 Mar; 16(1):137-43. PubMed ID: 12572673 [TBL] [Abstract][Full Text] [Related]
16. Structure of the ATP binding domain from the Archaeoglobus fulgidus Cu+-ATPase. Sazinsky MH; Mandal AK; Argüello JM; Rosenzweig AC J Biol Chem; 2006 Apr; 281(16):11161-6. PubMed ID: 16495228 [TBL] [Abstract][Full Text] [Related]
17. Structural and functional insights of Wilson disease copper-transporting ATPase. Fatemi N; Sarkar B J Bioenerg Biomembr; 2002 Oct; 34(5):339-49. PubMed ID: 12539961 [TBL] [Abstract][Full Text] [Related]
18. A three-dimensional molecular model of lipid-free apolipoprotein A-I determined by cross-linking/mass spectrometry and sequence threading. Silva RA; Hilliard GM; Fang J; Macha S; Davidson WS Biochemistry; 2005 Mar; 44(8):2759-69. PubMed ID: 15723520 [TBL] [Abstract][Full Text] [Related]
19. Induction of the putative copper ATPases, CopA and CopB, of Enterococcus hirae by Ag+ and Cu2+, and Ag+ extrusion by CopB. Odermatt A; Krapf R; Solioz M Biochem Biophys Res Commun; 1994 Jul; 202(1):44-8. PubMed ID: 8037745 [TBL] [Abstract][Full Text] [Related]
20. Mass spectrometric identification of formaldehyde-induced peptide modifications under in vivo protein cross-linking conditions. Toews J; Rogalski JC; Clark TJ; Kast J Anal Chim Acta; 2008 Jun; 618(2):168-83. PubMed ID: 18513538 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]