These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 18979168)
21. Novel Zn2+ coordination by the regulatory N-terminus metal binding domain of Arabidopsis thaliana Zn(2+)-ATPase HMA2. Eren E; González-Guerrero M; Kaufman BM; Argüello JM Biochemistry; 2007 Jul; 46(26):7754-64. PubMed ID: 17550234 [TBL] [Abstract][Full Text] [Related]
22. Mapping the topology and determination of a low-resolution three-dimensional structure of the calmodulin-melittin complex by chemical cross-linking and high-resolution FTICRMS: direct demonstration of multiple binding modes. Schulz DM; Ihling C; Clore GM; Sinz A Biochemistry; 2004 Apr; 43(16):4703-15. PubMed ID: 15096039 [TBL] [Abstract][Full Text] [Related]
23. Analysis of the metal-binding selectivity of the metallochaperone CopZ from Enterococcus hirae by electrospray ionization mass spectrometry. Urvoas A; Amekraz B; Moulin C; Le Clainche L; Stöcklin R; Moutiez M Rapid Commun Mass Spectrom; 2003; 17(16):1889-96. PubMed ID: 12876690 [TBL] [Abstract][Full Text] [Related]
27. Predicting the three-dimensional structure of human P-glycoprotein in absence of ATP by computational techniques embodying crosslinking data: insight into the mechanism of ligand migration and binding sites. Vandevuer S; Van Bambeke F; Tulkens PM; Prévost M Proteins; 2006 May; 63(3):466-78. PubMed ID: 16463278 [TBL] [Abstract][Full Text] [Related]
28. Domain organization and movements in heavy metal ion pumps: papain digestion of CopA, a Cu+-transporting ATPase. Hatori Y; Majima E; Tsuda T; Toyoshima C J Biol Chem; 2007 Aug; 282(35):25213-21. PubMed ID: 17616523 [TBL] [Abstract][Full Text] [Related]
29. Heavy metal transport CPx-ATPases from the thermophile Archaeoglobus fulgidus. Argüello JM; Mandal AK; Mana-Capelli S Ann N Y Acad Sci; 2003 Apr; 986():212-8. PubMed ID: 12763798 [TBL] [Abstract][Full Text] [Related]
30. Structure of the rotor of the V-Type Na+-ATPase from Enterococcus hirae. Murata T; Yamato I; Kakinuma Y; Leslie AG; Walker JE Science; 2005 Apr; 308(5722):654-9. PubMed ID: 15802565 [TBL] [Abstract][Full Text] [Related]
31. The mechanism of Cu+ transport ATPases: interaction with CU+ chaperones and the role of transient metal-binding sites. Padilla-Benavides T; McCann CJ; Argüello JM J Biol Chem; 2013 Jan; 288(1):69-78. PubMed ID: 23184962 [TBL] [Abstract][Full Text] [Related]
32. CopA: An Escherichia coli Cu(I)-translocating P-type ATPase. Rensing C; Fan B; Sharma R; Mitra B; Rosen BP Proc Natl Acad Sci U S A; 2000 Jan; 97(2):652-6. PubMed ID: 10639134 [TBL] [Abstract][Full Text] [Related]
33. Role of metal-binding domains of the copper pump from Archaeoglobus fulgidus. Rice WJ; Kovalishin A; Stokes DL Biochem Biophys Res Commun; 2006 Sep; 348(1):124-31. PubMed ID: 16876128 [TBL] [Abstract][Full Text] [Related]
34. A gene encoding the 16-kDa proteolipid subunit of Enterococcus hirae Na(+)-ATPase complex. Kakinuma Y; Kakinuma S; Takase K; Konishi K; Igarashi K; Yamato I Biochem Biophys Res Commun; 1993 Sep; 195(2):1063-9. PubMed ID: 8373385 [TBL] [Abstract][Full Text] [Related]
35. Nucleotide recognition by CopA, a Cu+-transporting P-type ATPase. Tsuda T; Toyoshima C EMBO J; 2009 Jun; 28(12):1782-91. PubMed ID: 19478797 [TBL] [Abstract][Full Text] [Related]
36. Identification of nucleotide binding sites in V-type Na+-ATPase from Enterococcus hirae. Hosaka T; Murata T; Kakinuma Y; Yamato I Biosci Biotechnol Biochem; 2004 Feb; 68(2):293-9. PubMed ID: 14981290 [TBL] [Abstract][Full Text] [Related]
37. Distinct functions of serial metal-binding domains in the Escherichia coli P1 B -ATPase CopA. Drees SL; Beyer DF; Lenders-Lomscher C; Lübben M Mol Microbiol; 2015 Aug; 97(3):423-38. PubMed ID: 25899340 [TBL] [Abstract][Full Text] [Related]
38. Understanding copper trafficking in bacteria: interaction between the copper transport protein CopZ and the N-terminal domain of the copper ATPase CopA from Bacillus subtilis. Banci L; Bertini I; Ciofi-Baffoni S; Del Conte R; Gonnelli L Biochemistry; 2003 Feb; 42(7):1939-49. PubMed ID: 12590580 [TBL] [Abstract][Full Text] [Related]
39. Mechanism of Cu+-transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites. González-Guerrero M; Argüello JM Proc Natl Acad Sci U S A; 2008 Apr; 105(16):5992-7. PubMed ID: 18417453 [TBL] [Abstract][Full Text] [Related]
40. Characterization and comparison of metal accumulation in two Escherichia coli strains expressing either CopA or MntA, heavy metal-transporting bacterial P-type adenosine triphosphatases. Zagorski N; Wilson DB Appl Biochem Biotechnol; 2004 Apr; 117(1):33-48. PubMed ID: 15126702 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]