BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 1897938)

  • 1. Complete amino acid sequence of the type III isozyme of rat hexokinase, deduced from the cloned cDNA.
    Schwab DA; Wilson JE
    Arch Biochem Biophys; 1991 Mar; 285(2):365-70. PubMed ID: 1897938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complete amino acid sequence of the type II isozyme of rat hexokinase, deduced from the cloned cDNA: comparison with a hexokinase from novikoff ascites tumor.
    Thelen AP; Wilson JE
    Arch Biochem Biophys; 1991 May; 286(2):645-51. PubMed ID: 1897984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complete amino acid sequence of rat brain hexokinase, deduced from the cloned cDNA, and proposed structure of a mammalian hexokinase.
    Schwab DA; Wilson JE
    Proc Natl Acad Sci U S A; 1989 Apr; 86(8):2563-7. PubMed ID: 2704734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional organization and evolution of mammalian hexokinases: mutations that caused the loss of catalytic activity in N-terminal halves of type I and type III isozymes.
    Tsai HJ
    Arch Biochem Biophys; 1999 Sep; 369(1):149-56. PubMed ID: 10462451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of yeast glucokinase, a strongly diverged specific aldo-hexose-phosphorylating isoenzyme.
    Albig W; Entian KD
    Gene; 1988 Dec; 73(1):141-52. PubMed ID: 3072253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional organization of mammalian hexokinases: both N- and C-terminal halves of the rat type II isozyme possess catalytic sites.
    Tsai HJ; Wilson JE
    Arch Biochem Biophys; 1996 May; 329(1):17-23. PubMed ID: 8619630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The complete amino acid sequence of the catalytic domain of rat brain hexokinase, deduced from the cloned cDNA.
    Schwab DA; Wilson JE
    J Biol Chem; 1988 Mar; 263(7):3220-4. PubMed ID: 3277968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of the type II hexokinase gene by duplication and fusion of the glucokinase gene with conservation of its organization.
    Kogure K; Shinohara Y; Terada H
    J Biol Chem; 1993 Apr; 268(12):8422-4. PubMed ID: 8473284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The human gene for the type III isozyme of hexokinase: structure, basal promoter, and evolution.
    Sebastian S; Edassery S; Wilson JE
    Arch Biochem Biophys; 2001 Nov; 395(1):113-20. PubMed ID: 11673872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional consequences of mutation of highly conserved serine residues, found at equivalent positions in the N- and C-terminal domains of mammalian hexokinases.
    Baijal M; Wilson JE
    Arch Biochem Biophys; 1992 Oct; 298(1):271-8. PubMed ID: 1524437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification, expression and bioactivity of hexokinase in amphioxus: insights into evolution of vertebrate hexokinase genes.
    Li M; Gao Z; Wang Y; Wang H; Zhang S
    Gene; 2014 Feb; 535(2):318-26. PubMed ID: 24262936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The amino acid sequence of rat liver glucokinase deduced from cloned cDNA.
    Andreone TL; Printz RL; Pilkis SJ; Magnuson MA; Granner DK
    J Biol Chem; 1989 Jan; 264(1):363-9. PubMed ID: 2909525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional organization of mammalian hexokinases: characterization of the rat type III isozyme and its chimeric forms, constructed with the N- and C-terminal halves of the type I and type II isozymes.
    Tsai HJ; Wilson JE
    Arch Biochem Biophys; 1997 Feb; 338(2):183-92. PubMed ID: 9028870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mammalian hexokinase 1: evolutionary conservation and structure to function analysis.
    Griffin LD; Gelb BD; Wheeler DA; Davison D; Adams V; McCabe ER
    Genomics; 1991 Dec; 11(4):1014-24. PubMed ID: 1783373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of the human hexokinase type I gene and nucleotide sequence of the 5' flanking region.
    Ruzzo A; Andreoni F; Magnani M
    Biochem J; 1998 Apr; 331 ( Pt 2)(Pt 2):607-13. PubMed ID: 9531504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Residues putatively involved in binding of ATP and glucose 6-phosphate to a mammalian hexokinase: site-directed mutation at analogous positions in the N- and C-terminal halves of the type I isozyme.
    Baijal M; Wilson JE
    Arch Biochem Biophys; 1995 Aug; 321(2):413-20. PubMed ID: 7646067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular cloning and characterization of the gene HXK1 encoding the hexokinase from Yarrowia lipolytica.
    Petit T; Gancedo C
    Yeast; 1999 Nov; 15(15):1573-84. PubMed ID: 10572255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular and biochemical characterization of hexokinase from Trypanosoma cruzi.
    Cáceres AJ; Portillo R; Acosta H; Rosales D; Quiñones W; Avilan L; Salazar L; Dubourdieu M; Michels PA; Concepción JL
    Mol Biochem Parasitol; 2003 Feb; 126(2):251-62. PubMed ID: 12615324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human islet glucokinase gene. Isolation and sequence analysis of full-length cDNA.
    Koranyi LI; Tanizawa Y; Welling CM; Rabin DU; Permutt MA
    Diabetes; 1992 Jul; 41(7):807-11. PubMed ID: 1612194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular model of human beta-cell glucokinase built by analogy to the crystal structure of yeast hexokinase B.
    St Charles R; Harrison RW; Bell GI; Pilkis SJ; Weber IT
    Diabetes; 1994 Jun; 43(6):784-91. PubMed ID: 8194664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.