BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 1897952)

  • 1. Mechanisms of 1,3-butadiene oxidations to butadiene monoxide and crotonaldehyde by mouse liver microsomes and chloroperoxidase.
    Elfarra AA; Duescher RJ; Pasch CM
    Arch Biochem Biophys; 1991 Apr; 286(1):244-51. PubMed ID: 1897952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloroperoxidase-mediated oxidation of 1,3-butadiene to 3-butenal, a crotonaldehyde precursor.
    Duescher RJ; Elfarra AA
    Chem Res Toxicol; 1993; 6(5):669-73. PubMed ID: 8292745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 1,3-Butadiene oxidation by human myeloperoxidase. Role of chloride ion in catalysis of divergent pathways.
    Duescher RJ; Elfarra AA
    J Biol Chem; 1992 Oct; 267(28):19859-65. PubMed ID: 1328183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human liver microsomes are efficient catalysts of 1,3-butadiene oxidation: evidence for major roles by cytochromes P450 2A6 and 2E1.
    Duescher RJ; Elfarra AA
    Arch Biochem Biophys; 1994 Jun; 311(2):342-9. PubMed ID: 8203896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the biotransformation of 1,3-butadiene and its metabolite, butadiene monoepoxide, by hepatic and pulmonary tissues from humans, rats and mice.
    Csanády GA; Guengerich FP; Bond JA
    Carcinogenesis; 1992 Jul; 13(7):1143-53. PubMed ID: 1638680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Species and tissue differences in the microsomal oxidation of 1,3-butadiene and the glutathione conjugation of butadiene monoxide in mice and rats. Possible role in 1,3-butadiene-induced toxicity.
    Sharer JE; Duescher RJ; Elfarra AA
    Drug Metab Dispos; 1992; 20(5):658-64. PubMed ID: 1358569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidation of butadiene monoxide to meso- and (+/-)-diepoxybutane by cDNA-expressed human cytochrome P450s and by mouse, rat, and human liver microsomes: evidence for preferential hydration of meso-diepoxybutane in rat and human liver microsomes.
    Krause RJ; Elfarra AA
    Arch Biochem Biophys; 1997 Jan; 337(2):176-84. PubMed ID: 9016811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simplified methodology for quantitation of butadiene metabolites. Application to the study of 1,3-butadiene metabolism by rat liver microsomes.
    Cheng X; Ruth JA
    Drug Metab Dispos; 1993; 21(1):121-4. PubMed ID: 8095204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation of 1,2-epoxy-3-butene to 1,2:3,4-diepoxybutane by cDNA-expressed human cytochromes P450 2E1 and 3A4 and human, mouse and rat liver microsomes.
    Seaton MJ; Follansbee MH; Bond JA
    Carcinogenesis; 1995 Oct; 16(10):2287-93. PubMed ID: 7586124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemistry of 1,3-butadiene metabolism and its relevance to 1,3-butadiene-induced carcinogenicity.
    Elfarra AA; Krause RJ; Selzer RR
    Toxicology; 1996 Oct; 113(1-3):23-30. PubMed ID: 8901879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological activation of 1,3-butadiene to vinyl oxirane by rat liver microsomes and expiration of the reactive metabolite by exposed rats.
    Bolt HM; Schmiedel G; Filser JG; Rolzhäuser HP; Lieser K; Wistuba D; Schurig V
    J Cancer Res Clin Oncol; 1983; 106(2):112-6. PubMed ID: 6630281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hepatic microsomal metabolism of 1,3-butadiene.
    Malvoisin E; Roberfroid M
    Xenobiotica; 1982 Feb; 12(2):137-44. PubMed ID: 7090423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epoxidation of 1,3-butadiene in liver and lung tissue of mouse, rat, monkey and man.
    Schmidt U; Loeser E
    Adv Exp Med Biol; 1986; 197():951-7. PubMed ID: 3766304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism of 1,3-butadiene to butadiene monoxide in mouse and human bone marrow cells.
    Maniglier-Poulet C; Cheng X; Ruth JA; Ross D
    Chem Biol Interact; 1995 Jul; 97(2):119-29. PubMed ID: 7606811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of crotonaldehyde as a hepatic microsomal metabolite formed by alpha-hydroxylation of the carcinogen N-nitrosopyrrolidine.
    Wang MY; Chung FL; Hecht SS
    Chem Res Toxicol; 1988; 1(1):28-31. PubMed ID: 2979707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-mechanism relationships in hemoproteins. Oxygenations catalyzed by chloroperoxidase and horseradish peroxidase.
    Ortiz de Montellano PR; Choe YS; DePillis G; Catalano CE
    J Biol Chem; 1987 Aug; 262(24):11641-6. PubMed ID: 3624229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-pass metabolism of 1,3-butadiene in once-through perfused livers of rats and mice.
    Filser JG; Faller TH; Bhowmik S; Schuster A; Kessler W; Pütz C; Csanády GA
    Chem Biol Interact; 2001 Jun; 135-136():249-65. PubMed ID: 11397395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism of 3-butene-1,2-diol in B6C3F1 mice. Evidence for involvement of alcohol dehydrogenase and cytochrome p450.
    Kemper RA; Elfarra AA; Myers SR
    Drug Metab Dispos; 1998 Sep; 26(9):914-20. PubMed ID: 9733671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzyme specific kinetics of 1,2-epoxybutene-3 in microsomes and cytosol from livers of mouse, rat, and man.
    Kreuzer PE; Kessler W; Welter HF; Baur C; Filser JG
    Arch Toxicol; 1991; 65(1):59-67. PubMed ID: 2043052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isoprene metabolism by liver microsomal mono-oxygenases.
    Del Monte M; Citti L; Gervasi PG
    Xenobiotica; 1985 Jul; 15(7):591-7. PubMed ID: 4049899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.