BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 18979771)

  • 1. Model-based segmentation using graph representations.
    Seghers D; Hermans J; Loeckx D; Maes F; Vandermeulen D; Suetens P
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 1):393-400. PubMed ID: 18979771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimal shape and intensity cost path segmentation.
    Seghers D; Loeckx D; Maes F; Vandermeulen D; Suetens P
    IEEE Trans Med Imaging; 2007 Aug; 26(8):1115-29. PubMed ID: 17695131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic X-ray landmark detection and shape segmentation via data-driven joint estimation of image displacements.
    Chen C; Xie W; Franke J; Grutzner PA; Nolte LP; Zheng G
    Med Image Anal; 2014 Apr; 18(3):487-99. PubMed ID: 24561486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spine segmentation using articulated shape models.
    Klinder T; Wolz R; Lorenz C; Franz A; Ostermann J
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 1):227-34. PubMed ID: 18979752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liver segmentation approach using graph cuts and iteratively estimated shape and intensity constrains.
    Afifi A; Nakaguchi T
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 2):395-403. PubMed ID: 23286073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Weights and topology: a study of the effects of graph construction on 3D image segmentation.
    Grady L; Jolly MP
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 1):153-61. PubMed ID: 18979743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated model-based rib cage segmentation and labeling in CT images.
    Klinder T; Lorenz C; von Berg J; Dries SP; Bülow T; Ostermann J
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 2):195-202. PubMed ID: 18044569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liver segmentation using automatically defined patient specific B-spline surface models.
    Song Y; Bulpitt AJ; Brodlie KW
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):43-50. PubMed ID: 20426094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Segmentation of neck lymph nodes in CT datasets with stable 3D mass-spring models.
    Dornheim J; Seim H; Preim B; Hertel I; Strauss G
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 2):904-11. PubMed ID: 17354859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional lung tumor segmentation from x-ray computed tomography using sparse field active models.
    Awad J; Owrangi A; Villemaire L; O'Riordan E; Parraga G; Fenster A
    Med Phys; 2012 Feb; 39(2):851-65. PubMed ID: 22320795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonparametric intensity priors for level set segmentation of low contrast structures.
    Makrogiannis S; Bhotika R; Miller JV; Skinner J; Vass M
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):239-46. PubMed ID: 20425993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated segmentation of the liver from 3D CT images using probabilistic atlas and multi-level statistical shape model.
    Okada T; Shimada R; Sato Y; Hori M; Yokota K; Nakamoto M; Chen YW; Nakamura H; Tamura S
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):86-93. PubMed ID: 18051047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A conditional statistical shape model with integrated error estimation of the conditions; application to liver segmentation in non-contrast CT images.
    Tomoshige S; Oost E; Shimizu A; Watanabe H; Nawano S
    Med Image Anal; 2014 Jan; 18(1):130-43. PubMed ID: 24184436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-parametric iterative model constraint graph min-cut for automatic kidney segmentation.
    Freiman M; Kronman A; Esses SJ; Joskowicz L; Sosna J
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):73-80. PubMed ID: 20879385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of intensity priors for knowledge-based level set algorithm in calvarial tumors segmentation.
    Popovic A; Wu T; Engelhardt M; Radermacher K
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 2):864-71. PubMed ID: 17354854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An interactive geometric technique for upper and lower teeth segmentation.
    Le BH; Deng Z; Xia J; Chang YB; Zhou X
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):968-75. PubMed ID: 20426205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constructing a probabilistic model for automated liver region segmentation using non-contrast X-ray torso CT images.
    Zhou X; Kitagawa T; Hara T; Fujita H; Zhang X; Yokoyama R; Kondo H; Kanematsu M; Hoshi H
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 2):856-63. PubMed ID: 17354853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improve threshold segmentation using features extraction to automatic lung delimitation.
    França C; Vasconcelos G; Diniz P; Melo P; Diniz J; Novaes M
    Stud Health Technol Inform; 2013; 192():1159. PubMed ID: 23920933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supervised probabilistic segmentation of pulmonary nodules in CT scans.
    van Ginneken B
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 2):912-9. PubMed ID: 17354860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model-based esophagus segmentation from CT scans using a spatial probability map.
    Feulner J; Zhou SK; Huber M; Cavallaro A; Hornegger J; Comaniciu D
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 1):95-102. PubMed ID: 20879219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.