BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 1897998)

  • 1. Oxidation-reduction properties of trimethylamine dehydrogenase: effect of inhibitor binding.
    Pace CP; Stankovich MT
    Arch Biochem Biophys; 1991 May; 287(1):97-104. PubMed ID: 1897998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic studies on the dehydrogenases of methylotrophic bacteria. 1. The influence of substrate binding to reduced trimethylamine dehydrogenase on the intramolecular electron transfer between its prosthetic groups.
    Steenkamp DJ; Beinert H
    Biochem J; 1982 Nov; 207(2):233-9. PubMed ID: 6297455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microcoulometric analysis of trimethylamine dehydrogenase.
    Barber MJ; Pollock V; Spence JT
    Biochem J; 1988 Dec; 256(2):657-9. PubMed ID: 3223938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser flash photolysis study of intermolecular and intramolecular electron transfer in trimethylamine dehydrogenase.
    Hazzard JT; McIntire WS; Tollin G
    Biochemistry; 1991 May; 30(18):4559-64. PubMed ID: 2021648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intramolecular electron transfer in trimethylamine dehydrogenase from bacterium W3A1.
    Rohlfs RJ; Hille R
    J Biol Chem; 1991 Aug; 266(23):15244-52. PubMed ID: 1651321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiolytic studies of trimethylamine dehydrogenase. Spectral deconvolution of the neutral and anionic flavin semiquinone, and determination of rate constants for electron transfer in the one-electron reduced enzyme.
    Anderson RF; Jang MH; Hille R
    J Biol Chem; 2000 Oct; 275(40):30781-6. PubMed ID: 10859304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembly of redox centers in the trimethylamine dehydrogenase of bacterium W3A1. Properties of the wild-type enzyme and a C30A mutant expressed from a cloned gene in Escherichia coli.
    Scrutton NS; Packman LC; Mathews FS; Rohlfs RJ; Hille R
    J Biol Chem; 1994 May; 269(19):13942-50. PubMed ID: 8188674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inactivation of C30A trimethylamine dehydrogenase by N-cyclopropyl-alpha-methylbenzylamine, 1-phenylcyclopropylamine, and phenylhydrazine.
    Mitchell DJ; Nikolic D; Jang MH; van Breemen RB; Hille R; Silverman RB
    Biochemistry; 2001 Jul; 40(29):8523-30. PubMed ID: 11456490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction of the C30A mutant of trimethylamine dehydrogenase with diethylmethylamine.
    Huang L; Scrutton NS; Hille R
    J Biol Chem; 1996 Jun; 271(23):13401-6. PubMed ID: 8662829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic studies on the dehydrogenases of methylotrophic bacteria. 2. Kinetic studies on the intramolecular electron transfer in trimethylamine and dimethylamine dehydrogenase.
    Steenkamp DJ; Beinert H
    Biochem J; 1982 Nov; 207(2):241-52. PubMed ID: 6297456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification and properties of the trimethylamine dehydrogenase of bacterium 4B6.
    Colby J; Zatman LJ
    Biochem J; 1974 Dec; 143(3):555-67. PubMed ID: 4462741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of glutamate-59 hydrogen bonded to N(3)H of the flavin mononucleotide cofactor in the modulation of the redox potentials of the Clostridium beijerinckii flavodoxin. Glutamate-59 is not responsible for the pH dependency but contributes to the stabilization of the flavin semiquinone.
    Bradley LH; Swenson RP
    Biochemistry; 1999 Sep; 38(38):12377-86. PubMed ID: 10493805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox cycles in trimethylamine dehydrogenase and mechanism of substrate inhibition.
    Roberts P; Basran J; Wilson EK; Hille R; Scrutton NS
    Biochemistry; 1999 Nov; 38(45):14927-40. PubMed ID: 10555975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unusual redox properties of electron-transfer flavoprotein from Methylophilus methylotrophus.
    Byron CM; Stankovich MT; Husain M; Davidson VL
    Biochemistry; 1989 Oct; 28(21):8582-7. PubMed ID: 2605209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intramolecular electron transfer in trimethylamine dehydrogenase: a thermodynamic analysis.
    Falzon L; Davidson VL
    Biochemistry; 1996 Sep; 35(37):12111-8. PubMed ID: 8810917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox properties of electron-transferring flavoprotein from Megasphaera elsdenii.
    Pace CP; Stankovich MT
    Biochim Biophys Acta; 1987 Feb; 911(3):267-76. PubMed ID: 3814604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 6-S-cysteinyl flavin mononucleotide-containing histamine dehydrogenase from Nocardioides simplex: molecular cloning, sequencing, overexpression, and characterization of redox centers of enzyme.
    Fujieda N; Satoh A; Tsuse N; Kano K; Ikeda T
    Biochemistry; 2004 Aug; 43(33):10800-8. PubMed ID: 15311941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation-reduction properties of glycolate oxidase.
    Pace C; Stankovich M
    Biochemistry; 1986 May; 25(9):2516-22. PubMed ID: 3521736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monomeric sarcosine oxidase: 1. Flavin reactivity and active site binding determinants.
    Wagner MA; Trickey P; Chen ZW; Mathews FS; Jorns MS
    Biochemistry; 2000 Aug; 39(30):8813-24. PubMed ID: 10913292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic model for the regulation by substrate of intramolecular electron transfer in trimethylamine dehydrogenase.
    Falzon L; Davidson VL
    Biochemistry; 1996 Feb; 35(7):2445-52. PubMed ID: 8652588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.