These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 18980178)
1. Effect of maghemite nanoparticles on insulin amyloid fibril formation: selective labeling, kinetics, and fibril removal by a magnetic field. Skaat H; Sorci M; Belfort G; Margel S J Biomed Mater Res A; 2009 Nov; 91(2):342-51. PubMed ID: 18980178 [TBL] [Abstract][Full Text] [Related]
2. Synthesis and characterization of fluorinated magnetic core-shell nanoparticles for inhibition of insulin amyloid fibril formation. Skaat H; Belfort G; Margel S Nanotechnology; 2009 Jun; 20(22):225106. PubMed ID: 19433878 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of fluorescent-maghemite nanoparticles as multimodal imaging agents for amyloid-beta fibrils detection and removal by a magnetic field. Skaat H; Margel S Biochem Biophys Res Commun; 2009 Sep; 386(4):645-9. PubMed ID: 19559008 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and characterization of poly(divinylbenzene)-coated magnetic iron oxide nanoparticles as precursor for the formation of air-stable carbon-coated iron crystalline nanoparticles. Boguslavsky Y; Margel S J Colloid Interface Sci; 2008 Jan; 317(1):101-14. PubMed ID: 17927999 [TBL] [Abstract][Full Text] [Related]
5. As(V) adsorption on maghemite nanoparticles. Tuutijärvi T; Lu J; Sillanpää M; Chen G J Hazard Mater; 2009 Jul; 166(2-3):1415-20. PubMed ID: 19167160 [TBL] [Abstract][Full Text] [Related]
7. Inductive heat property of Fe3O4/polymer composite nanoparticles in an ac magnetic field for localized hyperthermia. Zhao DL; Zhang HL; Zeng XW; Xia QS; Tang JT Biomed Mater; 2006 Dec; 1(4):198-201. PubMed ID: 18458406 [TBL] [Abstract][Full Text] [Related]
8. Preparation of amyloid-like fibrils containing magnetic iron oxide nanoparticles: effect of protein aggregation on proton relaxivity. Andersson BV; Skoglund C; Uvdal K; Solin N Biochem Biophys Res Commun; 2012 Mar; 419(4):682-6. PubMed ID: 22382020 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis. Iida H; Takayanagi K; Nakanishi T; Osaka T J Colloid Interface Sci; 2007 Oct; 314(1):274-80. PubMed ID: 17568605 [TBL] [Abstract][Full Text] [Related]
10. Adsorptive removal of Congo red, a carcinogenic textile dye, from aqueous solutions by maghemite nanoparticles. Afkhami A; Moosavi R J Hazard Mater; 2010 Feb; 174(1-3):398-403. PubMed ID: 19819070 [TBL] [Abstract][Full Text] [Related]
11. Structural and magnetic characterization of self-assembled iron oxide nanoparticle arrays. Benitez MJ; Mishra D; Szary P; Badini Confalonieri GA; Feyen M; Lu AH; Agudo L; Eggeler G; Petracic O; Zabel H J Phys Condens Matter; 2011 Mar; 23(12):126003. PubMed ID: 21378441 [TBL] [Abstract][Full Text] [Related]
12. Facile synthesis of Fe3O4 nanoparticles by reduction phase transformation from gamma-Fe2O3 nanoparticles in organic solvent. Hai HT; Kura H; Takahashi M; Ogawa T J Colloid Interface Sci; 2010 Jan; 341(1):194-9. PubMed ID: 19850300 [TBL] [Abstract][Full Text] [Related]
13. Lysozyme amyloidogenesis is accelerated by specific nicking and fragmentation but decelerated by intact protein binding and conversion. Mishra R; Sörgjerd K; Nyström S; Nordigården A; Yu YC; Hammarström P J Mol Biol; 2007 Feb; 366(3):1029-44. PubMed ID: 17196616 [TBL] [Abstract][Full Text] [Related]
14. Cellular level loading and heating of superparamagnetic iron oxide nanoparticles. Kalambur VS; Longmire EK; Bischof JC Langmuir; 2007 Nov; 23(24):12329-36. PubMed ID: 17960940 [TBL] [Abstract][Full Text] [Related]
16. Preparation of alumina-iron oxide compounds by gel evaporation method and its simultaneous uptake properties for Ni2+, NH4+ and H2PO4-. Gulshan F; Kameshima Y; Nakajima A; Okada K J Hazard Mater; 2009 Sep; 169(1-3):697-702. PubMed ID: 19428184 [TBL] [Abstract][Full Text] [Related]
17. Controlling the size of magnetic nanoparticles using pluronic block copolymer surfactants. Lai JI; Shafi KV; Ulman A; Loos K; Lee Y; Vogt T; Lee WL; Ong NP; Estournès C J Phys Chem B; 2005 Jan; 109(1):15-8. PubMed ID: 16850974 [TBL] [Abstract][Full Text] [Related]
18. Magnetic gamma-Fe(2)O(3) nanoparticles coated with poly-l-cysteine for chelation of As(III), Cu(II), Cd(II), Ni(II), Pb(II) and Zn(II). White BR; Stackhouse BT; Holcombe JA J Hazard Mater; 2009 Jan; 161(2-3):848-53. PubMed ID: 18571848 [TBL] [Abstract][Full Text] [Related]
19. Influence of divalent copper, manganese and zinc ions on fibril nucleation and elongation of the amyloid-like yeast prion determinant Sup35p-NM. Suhre MH; Hess S; Golser AV; Scheibel T J Inorg Biochem; 2009 Dec; 103(12):1711-20. PubMed ID: 19853305 [TBL] [Abstract][Full Text] [Related]
20. Template-directed self-assembly and growth of insulin amyloid fibrils. Ha C; Park CB Biotechnol Bioeng; 2005 Jun; 90(7):848-55. PubMed ID: 15803463 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]