BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 18980308)

  • 1. Trapping and characterization of a reaction intermediate in carbapenem hydrolysis by B. cereus metallo-beta-lactamase.
    Tioni MF; Llarrull LI; Poeylaut-Palena AA; Martí MA; Saggu M; Periyannan GR; Mata EG; Bennett B; Murgida DH; Vila AJ
    J Am Chem Soc; 2008 Nov; 130(47):15852-63. PubMed ID: 18980308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal content and localization during turnover in B. cereus metallo-beta-lactamase.
    Llarrull LI; Tioni MF; Vila AJ
    J Am Chem Soc; 2008 Nov; 130(47):15842-51. PubMed ID: 18980306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme deactivation due to metal-ion dissociation during turnover of the cobalt-beta-lactamase catalyzed hydrolysis of beta-lactams.
    Badarau A; Page MI
    Biochemistry; 2006 Sep; 45(36):11012-20. PubMed ID: 16953588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for a dinuclear active site in the metallo-beta-lactamase BcII with substoichiometric Co(II). A new model for metal uptake.
    Llarrull LI; Tioni MF; Kowalski J; Bennett B; Vila AJ
    J Biol Chem; 2007 Oct; 282(42):30586-95. PubMed ID: 17715135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A general reaction mechanism for carbapenem hydrolysis by mononuclear and binuclear metallo-β-lactamases.
    Lisa MN; Palacios AR; Aitha M; González MM; Moreno DM; Crowder MW; Bonomo RA; Spencer J; Tierney DL; Llarrull LI; Vila AJ
    Nat Commun; 2017 Sep; 8(1):538. PubMed ID: 28912448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Zn2 position in metallo-beta-lactamases is critical for activity: a study on chimeric metal sites on a conserved protein scaffold.
    González JM; Medrano Martín FJ; Costello AL; Tierney DL; Vila AJ
    J Mol Biol; 2007 Nov; 373(5):1141-56. PubMed ID: 17915249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The activity of the dinuclear cobalt-beta-lactamase from Bacillus cereus in catalysing the hydrolysis of beta-lactams.
    Badarau A; Damblon C; Page MI
    Biochem J; 2007 Jan; 401(1):197-203. PubMed ID: 16961465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence of adaptability in metal coordination geometry and active-site loop conformation among B1 metallo-beta-lactamases .
    González JM; Buschiazzo A; Vila AJ
    Biochemistry; 2010 Sep; 49(36):7930-8. PubMed ID: 20677753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-ray absorption spectroscopy of metal site speciation in the metallo-β-lactamase BcII from Bacillus cereus.
    Breece RM; Llarrull LI; Tioni MF; Vila AJ; Tierney DL
    J Inorg Biochem; 2012 Jun; 111():182-6. PubMed ID: 22381913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grafting a new metal ligand in the cocatalytic site of B. cereus metallo-beta-lactamase: structural flexibility without loss of activity.
    Rasia RM; Ceolín M; Vila AJ
    Protein Sci; 2003 Jul; 12(7):1538-46. PubMed ID: 12824499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of the zinc-dependent beta-lactamase from Bacillus cereus at 1.9 A resolution: binuclear active site with features of a mononuclear enzyme.
    Fabiane SM; Sohi MK; Wan T; Payne DJ; Bateson JH; Mitchell T; Sutton BJ
    Biochemistry; 1998 Sep; 37(36):12404-11. PubMed ID: 9730812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineered mononuclear variants in Bacillus cereus metallo-beta-lactamase BcII are inactive.
    Abriata LA; González LJ; Llarrull LI; Tomatis PE; Myers WK; Costello AL; Tierney DL; Vila AJ
    Biochemistry; 2008 Aug; 47(33):8590-9. PubMed ID: 18652482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The variation of catalytic efficiency of Bacillus cereus metallo-beta-lactamase with different active site metal ions.
    Badarau A; Page MI
    Biochemistry; 2006 Sep; 45(35):10654-66. PubMed ID: 16939217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural determinants of substrate binding to Bacillus cereus metallo-beta-lactamase.
    Rasia RM; Vila AJ
    J Biol Chem; 2004 Jun; 279(25):26046-51. PubMed ID: 15140877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Insights into Recognition of Hydrolyzed Carbapenems and Inhibitors by Subclass B3 Metallo-β-Lactamase SMB-1.
    Wachino J; Yamaguchi Y; Mori S; Jin W; Kimura K; Kurosaki H; Arakawa Y
    Antimicrob Agents Chemother; 2016 Jul; 60(7):4274-82. PubMed ID: 27161644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complete ¹H, ¹⁵N, and ¹³C resonance assignments of Bacillus cereus metallo-β-lactamase and its complex with the inhibitor R-thiomandelic acid.
    Karsisiotis AI; Damblon C; Roberts GC
    Biomol NMR Assign; 2014 Oct; 8(2):313-8. PubMed ID: 23838816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Carbapenem-Based Off-On Fluorescent Probe for Specific Detection of Metallo-β-Lactamase Activities.
    Mao W; Wang Y; Qian X; Xia L; Xie H
    Chembiochem; 2019 Feb; 20(4):511-515. PubMed ID: 29718572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The basis for carbapenem hydrolysis by class A β-lactamases: a combined investigation using crystallography and simulations.
    Fonseca F; Chudyk EI; van der Kamp MW; Correia A; Mulholland AJ; Spencer J
    J Am Chem Soc; 2012 Nov; 134(44):18275-85. PubMed ID: 23030300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QM/MM investigation of substrate binding of subclass B3 metallo-β-lactamase SMB-1 from Serratia marcescents: insights into catalytic mechanism.
    Mu X; Xu D
    J Mol Model; 2020 Mar; 26(4):71. PubMed ID: 32146530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of ferrous iron by metallo-β-lactamases.
    Cahill ST; Tarhonskaya H; Rydzik AM; Flashman E; McDonough MA; Schofield CJ; Brem J
    J Inorg Biochem; 2016 Oct; 163():185-193. PubMed ID: 27498591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.