These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 18980394)

  • 41. Evaluation of an electrostatic toxicity model for predicting Ni(2+) toxicity to barley root elongation in hydroponic cultures and in soils.
    Wang P; Kopittke PM; De Schamphelaere KA; Zhao FJ; Zhou DM; Lock K; Ma YB; Peijnenburg WJ; McGrath SP
    New Phytol; 2011 Oct; 192(2):414-27. PubMed ID: 21707623
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effects of pH and dissolved organic carbon on the toxicity of cadmium and copper to a freshwater bivalve: further support for the extended free ion activity model.
    Markich SJ; Brown PL; Jeffree RA; Lim RP
    Arch Environ Contam Toxicol; 2003 Nov; 45(4):479-91. PubMed ID: 14708664
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Linking waterlogging tolerance with Mn²⁺ toxicity: a case study for barley.
    Huang X; Shabala S; Shabala L; Rengel Z; Wu X; Zhang G; Zhou M
    Plant Biol (Stuttg); 2015 Jan; 17(1):26-33. PubMed ID: 24985051
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Copper toxicity to Lemna minor modelled using humic acid as a surrogate for the plant root.
    Antunes PM; Scornaienchi ML; Roshon HD
    Chemosphere; 2012 Jul; 88(4):389-94. PubMed ID: 22429843
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Antioxidant defense system and cadmium uptake in barley genotypes differing in cadmium tolerance.
    Tiryakioglu M; Eker S; Ozkutlu F; Husted S; Cakmak I
    J Trace Elem Med Biol; 2006; 20(3):181-9. PubMed ID: 16959595
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of Soil Properties and Aging on Antimony Toxicity for Barley Root Elongation.
    Zhang P; Wu TL; Ata-Ul-Karim ST; Ge YY; Cui X; Zhou DM; Wang YJ
    Bull Environ Contam Toxicol; 2020 May; 104(5):714-720. PubMed ID: 32270217
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nanospecific Phytotoxicity of CuO Nanoparticles in Soils Disappeared When Bioavailability Factors Were Considered.
    Qiu H; Smolders E
    Environ Sci Technol; 2017 Oct; 51(20):11976-11985. PubMed ID: 28934849
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Biochemical adaptation of the barley root cells to toxic substances. II. Effect of heavy metals on phosphohydrolase activity].
    Tikhaia NI; Fedorovskaia MD
    Izv Akad Nauk Ser Biol; 2000; (6):688-94. PubMed ID: 11147498
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Alleviation effects of magnesium on copper toxicity and accumulation in grapevine roots evaluated with biotic ligand models.
    Chen BC; Ho PC; Juang KW
    Ecotoxicology; 2013 Jan; 22(1):174-83. PubMed ID: 23138334
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Copper regulates primary root elongation through PIN1-mediated auxin redistribution.
    Yuan HM; Xu HH; Liu WC; Lu YT
    Plant Cell Physiol; 2013 May; 54(5):766-78. PubMed ID: 23396597
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Physiological changes in barley plants under combined toxicity of aluminum, copper and cadmium.
    Guo TR; Zhang GP; Zhang YH
    Colloids Surf B Biointerfaces; 2007 Jun; 57(2):182-8. PubMed ID: 17344036
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Iron deficiency tolerance traits in wild (Hordeum maritimum) and cultivated barley (Hordeum vulgare).
    Yousfi S; Rabhi M; Abdelly C; Gharsalli M
    C R Biol; 2009 Jun; 332(6):523-33. PubMed ID: 19520315
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Alleviation of Cu and Pb rhizotoxicities in cowpea (Vigna unguiculata) as related to ion activities at root-cell plasma membrane surface.
    Kopittke PM; Kinraide TB; Wang P; Blamey FP; Reichman SM; Menzies NW
    Environ Sci Technol; 2011 Jun; 45(11):4966-73. PubMed ID: 21563792
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Influence of soil properties and soil leaching on the toxicity of ionic silver to plants.
    Langdon KA; McLaughlin MJ; Kirby JK; Merrington G
    Environ Toxicol Chem; 2015 Nov; 34(11):2503-12. PubMed ID: 25988481
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The influence of calcium and pH on the uptake and toxicity of copper in Folsomia candida exposed to simplified soil solutions.
    Ardestani MM; Verweij RA; van Gestel CA
    J Hazard Mater; 2013 Oct; 261():405-13. PubMed ID: 23973473
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Assessing the toxicity and accumulation of bulk- and nano-CuO in Hordeum sativum L.
    Rajput V; Chaplygin V; Gorovtsov A; Fedorenko A; Azarov A; Chernikova N; Barakhov A; Minkina T; Maksimov A; Mandzhieva S; Sushkova S
    Environ Geochem Health; 2021 Jun; 43(6):2443-2454. PubMed ID: 32737635
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Toxic effects of low concentrations of Cu on nodulation of cowpea (Vigna unguiculata).
    Kopittke PM; Dart PJ; Menzies NW
    Environ Pollut; 2007 Jan; 145(1):309-15. PubMed ID: 16678321
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluation of germination, root growth and cytological effects of wastewater of sugar factory (Afyonkarahisar) using Hordeum vulgare bioassays.
    Özkara A; Akyıl D; Erdoğmuş SF; Konuk M
    Environ Monit Assess; 2011 Dec; 183(1-4):517-24. PubMed ID: 21365443
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cell cycle stage specific application of cypermethrin and carbendazim to assess the genotoxicity in somatic cells of Hordeum vulgare L.
    Singh P; Srivastava AK; Singh AK
    Bull Environ Contam Toxicol; 2008 Sep; 81(3):258-61. PubMed ID: 18626565
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of barley varieties tolerant to cadmium toxicity.
    Chen F; Wang F; Zhang G; Wu F
    Biol Trace Elem Res; 2008 Feb; 121(2):171-9. PubMed ID: 17952384
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.