BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 18980401)

  • 1. Blocking of spatial learning between enclosure geometry and a local landmark.
    Wilson PN; Alexander T
    J Exp Psychol Learn Mem Cogn; 2008 Nov; 34(6):1369-76. PubMed ID: 18980401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blocking of goal-location learning based on shape.
    Alexander T; Wilson SP; Wilson PN
    J Exp Psychol Learn Mem Cogn; 2009 May; 35(3):694-708. PubMed ID: 19379044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enclosure shape influences cue competition effects and goal location learning.
    Wilson PN; Alexander T
    Q J Exp Psychol (Hove); 2010 Aug; 63(8):1552-67. PubMed ID: 20119881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facilitation of learning spatial relations among locations by visual cues: generality across spatial configurations.
    Sturz BR; Kelly DM; Brown MF
    Anim Cogn; 2010 Mar; 13(2):341-9. PubMed ID: 19777275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial reorientation: the effects of space size on the encoding of landmark and geometry information.
    Chiandetti C; Regolin L; Sovrano VA; Vallortigara G
    Anim Cogn; 2007 Apr; 10(2):159-68. PubMed ID: 17136416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple landmarks, the encoding of environmental geometry and the spatial logics of a dual brain.
    Chiesa AD; Pecchia T; Tommasi L; Vallortigara G
    Anim Cogn; 2006 Oct; 9(4):281-93. PubMed ID: 16941155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial cognition based on geometry and landmarks in the domestic chick (Gallus gallus).
    Chiesa AD; Speranza M; Tommasi L; Vallortigara G
    Behav Brain Res; 2006 Nov; 175(1):119-27. PubMed ID: 16979247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Encoding of relative enclosure size in a dynamic three-dimensional virtual environment by humans.
    Sturz BR; Kelly DM
    Behav Processes; 2009 Oct; 82(2):223-7. PubMed ID: 19576273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How fish do geometry in large and in small spaces.
    Sovrano VA; Bisazza A; Vallortigara G
    Anim Cogn; 2007 Jan; 10(1):47-54. PubMed ID: 16794851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of reference frames and number of cues available on the spatial orientation of males and females in a virtual memory task.
    Cánovas R; García RF; Cimadevilla JM
    Behav Brain Res; 2011 Jan; 216(1):116-21. PubMed ID: 20655953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attention, awareness of contingencies, and control in spatial localization: a qualitative difference approach.
    Vaquero JM; Fiacconi C; Milliken B
    J Exp Psychol Hum Percept Perform; 2010 Dec; 36(6):1342-57. PubMed ID: 21038991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orienting in virtual environments: How are surface features and environmental geometry weighted in an orientation task?
    Kelly DM; Bischof WF
    Cognition; 2008 Oct; 109(1):89-104. PubMed ID: 18834974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Newborns' perception of left-right spatial relations.
    Gava L; Valenza E; Turati C
    Child Dev; 2009; 80(6):1797-810. PubMed ID: 19930352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of cue types on sex differences in human spatial memory.
    Chai XJ; Jacobs LF
    Behav Brain Res; 2010 Apr; 208(2):336-42. PubMed ID: 19963014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning your way around town: how virtual taxicab drivers learn to use both layout and landmark information.
    Newman EL; Caplan JB; Kirschen MP; Korolev IO; Sekuler R; Kahana MJ
    Cognition; 2007 Aug; 104(2):231-53. PubMed ID: 16879816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gender differences in landmark learning for virtual navigation: the role of distance to a goal.
    Chamizo VD; Artigas AA; Sansa J; Banterla F
    Behav Processes; 2011 Sep; 88(1):20-6. PubMed ID: 21736927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transfer of route learning from virtual to real environments.
    Farrell MJ; Arnold P; Pettifer S; Adams J; Graham T; MacManamon M
    J Exp Psychol Appl; 2003 Dec; 9(4):219-27. PubMed ID: 14664673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learned predictiveness training modulates biases towards using boundary or landmark cues during navigation.
    Buckley MG; Smith AD; Haselgrove M
    Q J Exp Psychol (Hove); 2015; 68(6):1183-202. PubMed ID: 25409751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning about environmental geometry: an associative model.
    Miller NY; Shettleworth SJ
    J Exp Psychol Anim Behav Process; 2007 Jul; 33(3):191-212. PubMed ID: 17620021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Masking by object substitution: dissociation of masking and cuing effects.
    Neill WT; Hutchison KA; Graves DF
    J Exp Psychol Hum Percept Perform; 2002 Jun; 28(3):682-94. PubMed ID: 12075896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.