BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 18980611)

  • 1. The protein kinase A-anchoring protein moesin is bound to pigment granules in melanophores.
    Semenova I; Ikeda K; Ivanov P; Rodionov V
    Traffic; 2009 Feb; 10(2):153-60. PubMed ID: 18980611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein kinase A, which regulates intracellular transport, forms complexes with molecular motors on organelles.
    Kashina AS; Semenova IV; Ivanov PA; Potekhina ES; Zaliapin I; Rodionov VI
    Curr Biol; 2004 Oct; 14(20):1877-81. PubMed ID: 15498498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light modulates the melanophore response to alpha-MSH in Xenopus laevis: an analysis of the signal transduction crosstalk mechanisms involved.
    Isoldi MC; Provencio I; Castrucci AM
    Gen Comp Endocrinol; 2010 Jan; 165(1):104-10. PubMed ID: 19539625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An endogenous 5-HT(7) receptor mediates pigment granule dispersion in Xenopus laevis melanophores.
    Teh MT; Sugden D
    Br J Pharmacol; 2001 Apr; 132(8):1799-808. PubMed ID: 11309252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein kinase C activation antagonizes melatonin-induced pigment aggregation in Xenopus laevis melanophores.
    Sugden D; Rowe SJ
    J Cell Biol; 1992 Dec; 119(6):1515-21. PubMed ID: 1334961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Panax ginseng induces anterograde transport of pigment organelles in Xenopus melanophores.
    Eriksson TL; Svensson SP; Lundström I; Persson K; Andersson TP; Andersson RG
    J Ethnopharmacol; 2008 Sep; 119(1):17-23. PubMed ID: 18639398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of organelle movement in melanophores by protein kinase A (PKA), protein kinase C (PKC), and protein phosphatase 2A (PP2A).
    Reilein AR; Tint IS; Peunova NI; Enikolopov GN; Gelfand VI
    J Cell Biol; 1998 Aug; 142(3):803-13. PubMed ID: 9700167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for several roles of dynein in pigment transport in melanophores.
    Nilsson H; Wallin M
    Cell Motil Cytoskeleton; 1997; 38(4):397-409. PubMed ID: 9415381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rab32 regulates melanosome transport in Xenopus melanophores by protein kinase a recruitment.
    Park M; Serpinskaya AS; Papalopulu N; Gelfand VI
    Curr Biol; 2007 Dec; 17(23):2030-4. PubMed ID: 17997311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Height changes associated with pigment aggregation in Xenopus laevis melanophores.
    Immerstrand C; Nilsson HM; Lindroth M; Sundqvist T; Magnusson KE; Peterson KH
    Biosci Rep; 2004 Jun; 24(3):203-14. PubMed ID: 16209129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pigment dispersion in frog melanophores can be induced by a phorbol ester or stimulation of a recombinant receptor that activates phospholipase C.
    Graminski GF; Jayawickreme CK; Potenza MN; Lerner MR
    J Biol Chem; 1993 Mar; 268(8):5957-64. PubMed ID: 8383680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mechanisms of pigment transport in melanophores.
    Tuma MC; Gelfand VI
    Pigment Cell Res; 1999 Oct; 12(5):283-94. PubMed ID: 10541038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Switching between microtubule- and actin-based transport systems in melanophores is controlled by cAMP levels.
    Rodionov V; Yi J; Kashina A; Oladipo A; Gross SP
    Curr Biol; 2003 Oct; 13(21):1837-47. PubMed ID: 14588239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterotrimeric kinesin II is the microtubule motor protein responsible for pigment dispersion in Xenopus melanophores.
    Tuma MC; Zill A; Le Bot N; Vernos I; Gelfand V
    J Cell Biol; 1998 Dec; 143(6):1547-58. PubMed ID: 9852150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pertussis toxin sensitive photoaggregation of pigment in isolated Xenopus tail-fin melanophores.
    Rollag MD
    Photochem Photobiol; 1993 May; 57(5):862-6. PubMed ID: 8393196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bidirectional pigment granule movements of melanophores are regulated by protein phosphorylation and dephosphorylation.
    Rozdzial MM; Haimo LT
    Cell; 1986 Dec; 47(6):1061-70. PubMed ID: 3022941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions and regulation of molecular motors in Xenopus melanophores.
    Gross SP; Tuma MC; Deacon SW; Serpinskaya AS; Reilein AR; Gelfand VI
    J Cell Biol; 2002 Mar; 156(5):855-65. PubMed ID: 11864991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CK1 activates minus-end-directed transport of membrane organelles along microtubules.
    Ikeda K; Zhapparova O; Brodsky I; Semenova I; Tirnauer JS; Zaliapin I; Rodionov V
    Mol Biol Cell; 2011 Apr; 22(8):1321-9. PubMed ID: 21307338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinesin is responsible for centrifugal movement of pigment granules in melanophores.
    Rodionov VI; Gyoeva FK; Gelfand VI
    Proc Natl Acad Sci U S A; 1991 Jun; 88(11):4956-60. PubMed ID: 1828887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulation of microtubule-based transport by nucleation of microtubules on pigment granules.
    Semenova I; Gupta D; Usui T; Hayakawa I; Cowan A; Rodionov V
    Mol Biol Cell; 2017 Jun; 28(11):1418-1425. PubMed ID: 28381426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.