These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 1898088)
21. The specificity of the S1' subsite of cysteine proteases. Ménard R; Carmona E; Plouffe C; Brömme D; Konishi Y; Lefebvre J; Storer AC FEBS Lett; 1993 Aug; 328(1-2):107-10. PubMed ID: 8344413 [TBL] [Abstract][Full Text] [Related]
22. S3 to S3' subsite specificity of recombinant human cathepsin K and development of selective internally quenched fluorescent substrates. Alves MF; Puzer L; Cotrin SS; Juliano MA; Juliano L; Brömme D; Carmona AK Biochem J; 2003 Aug; 373(Pt 3):981-6. PubMed ID: 12733990 [TBL] [Abstract][Full Text] [Related]
23. The specificity of prolyl endopeptidase from Flavobacterium meningoseptum: mapping the S' subsites by positional scanning via acyl transfer. Bordusa F; Jakubke HD Bioorg Med Chem; 1998 Oct; 6(10):1775-80. PubMed ID: 9839007 [TBL] [Abstract][Full Text] [Related]
24. Effect of substrate residues on the P2' preference of retroviral proteinases. Boross P; Bagossi P; Copeland TD; Oroszlan S; Louis JM; Tözsér J Eur J Biochem; 1999 Sep; 264(3):921-9. PubMed ID: 10491141 [TBL] [Abstract][Full Text] [Related]
25. Role of amino acid sequences flanking dibasic cleavage sites in precursor proteolytic processing. The importance of the first residue C-terminal of the cleavage site. Rholam M; Brakch N; Germain D; Thomas DY; Fahy C; Boussetta H; Boileau G; Cohen P Eur J Biochem; 1995 Feb; 227(3):707-14. PubMed ID: 7867629 [TBL] [Abstract][Full Text] [Related]
26. Crystallographic analysis of human immunodeficiency virus 1 protease with an analog of the conserved CA-p2 substrate -- interactions with frequently occurring glutamic acid residue at P2' position of substrates. Weber IT; Wu J; Adomat J; Harrison RW; Kimmel AR; Wondrak EM; Louis JM Eur J Biochem; 1997 Oct; 249(2):523-30. PubMed ID: 9370363 [TBL] [Abstract][Full Text] [Related]
27. Differences in the P1' substrate specificities of pepsin A and chymosin. Kageyama H; Ueda H; Tezuka T; Ogasawara A; Narita Y; Kageyama T; Ichinose M J Biochem; 2010 Feb; 147(2):167-74. PubMed ID: 19819898 [TBL] [Abstract][Full Text] [Related]
28. HIV-1 protease specificity derived from a complex mixture of synthetic substrates. Kassel DB; Green MD; Wehbie RS; Swanstrom R; Berman J Anal Biochem; 1995 Jul; 228(2):259-66. PubMed ID: 8572304 [TBL] [Abstract][Full Text] [Related]
29. Drug-resistant HIV-1 proteases identify enzyme residues important for substrate selection and catalytic rate. Ridky TW; Kikonyogo A; Leis J; Gulnik S; Copeland T; Erickson J; Wlodawer A; Kurinov I; Harrison RW; Weber IT Biochemistry; 1998 Sep; 37(39):13835-45. PubMed ID: 9753473 [TBL] [Abstract][Full Text] [Related]
30. Molecular model of equine infectious anemia virus proteinase and kinetic measurements for peptide substrates with single amino acid substitutions. Weber IT; Tözsér J; Wu J; Friedman D; Oroszlan S Biochemistry; 1993 Apr; 32(13):3354-62. PubMed ID: 8384880 [TBL] [Abstract][Full Text] [Related]
31. Comparative sequence specificities of human 72- and 92-kDa gelatinases (type IV collagenases) and PUMP (matrilysin). Netzel-Arnett S; Sang QX; Moore WG; Navre M; Birkedal-Hansen H; Van Wart HE Biochemistry; 1993 Jun; 32(25):6427-32. PubMed ID: 8390857 [TBL] [Abstract][Full Text] [Related]
32. Study on substrate specificity at subsites for severe acute respiratory syndrome coronavirus 3CL protease. Shan YF; Xu GJ Acta Biochim Biophys Sin (Shanghai); 2005 Dec; 37(12):807-13. PubMed ID: 16331324 [TBL] [Abstract][Full Text] [Related]
33. Amino acid preferences for a critical substrate binding subsite of retroviral proteases in type 1 cleavage sites. Bagossi P; Sperka T; Fehér A; Kádas J; Zahuczky G; Miklóssy G; Boross P; Tözsér J J Virol; 2005 Apr; 79(7):4213-8. PubMed ID: 15767422 [TBL] [Abstract][Full Text] [Related]
34. Substrate specificity of beta-collagenase from Clostridium histolyticum. Steinbrink DR; Bond MD; Van Wart HE J Biol Chem; 1985 Mar; 260(5):2771-6. PubMed ID: 2982835 [TBL] [Abstract][Full Text] [Related]
35. Mutational analysis of the substrate binding pockets of the Rous sarcoma virus and human immunodeficiency virus-1 proteases. Cameron CE; Ridky TW; Shulenin S; Leis J; Weber IT; Copeland T; Wlodawer A; Burstein H; Bizub-Bender D; Skalka AM J Biol Chem; 1994 Apr; 269(15):11170-7. PubMed ID: 8157644 [TBL] [Abstract][Full Text] [Related]
36. Development of pseudopeptide inhibitors of HIV-1 aspartic protease: analysis and tuning of the subsite specificity. Tossi A; Antcheva N; Romeo D; Miertus S Pept Res; 1995; 8(6):328-34. PubMed ID: 8838416 [TBL] [Abstract][Full Text] [Related]
37. Comparative study of potyvirid NIa proteases and their cleavage sites. Palani SN; Sankaranarayanan R; Tennyson J Arch Virol; 2021 Apr; 166(4):1141-1149. PubMed ID: 33599826 [TBL] [Abstract][Full Text] [Related]
38. Amino acid sequence analysis of the proteolytic cleavage products of the bovine immunodeficiency virus Gag precursor polypeptide. Tobin GJ; Sowder RC; Fabris D; Hu MY; Battles JK; Fenselau C; Henderson LE; Gonda MA J Virol; 1994 Nov; 68(11):7620-7. PubMed ID: 7933153 [TBL] [Abstract][Full Text] [Related]
39. The effect of changing the hydrophobic S1' subsite of thermolysin-like proteases on substrate specificity. de Kreij A; van den Burg B; Veltman OR; Vriend G; Venema G; Eijsink VG Eur J Biochem; 2001 Sep; 268(18):4985-91. PubMed ID: 11559368 [TBL] [Abstract][Full Text] [Related]
40. Primary and tertiary structure of the principal human adenylate kinase. Von Zabern I; Wittmann-Liebold B; Untucht-Grau R; Schirmer RH; Pai EF Eur J Biochem; 1976 Sep; 68(1):281-90. PubMed ID: 183954 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]