BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 18981181)

  • 1. Analysis of glucose transporter topology and structural dynamics.
    Blodgett DM; Graybill C; Carruthers A
    J Biol Chem; 2008 Dec; 283(52):36416-24. PubMed ID: 18981181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid substrate translocation by the multisubunit, erythroid glucose transporter requires subunit associations but not cooperative ligand binding.
    Coderre PE; Cloherty EK; Zottola RJ; Carruthers A
    Biochemistry; 1995 Aug; 34(30):9762-73. PubMed ID: 7626647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis of GLUT1 inhibition by cytoplasmic ATP.
    Blodgett DM; De Zutter JK; Levine KB; Karim P; Carruthers A
    J Gen Physiol; 2007 Aug; 130(2):157-68. PubMed ID: 17635959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model of the exofacial substrate-binding site and helical folding of the human Glut1 glucose transporter based on scanning mutagenesis.
    Mueckler M; Makepeace C
    Biochemistry; 2009 Jun; 48(25):5934-42. PubMed ID: 19449892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. WZB117 (2-Fluoro-6-(m-hydroxybenzoyloxy) Phenyl m-Hydroxybenzoate) Inhibits GLUT1-mediated Sugar Transport by Binding Reversibly at the Exofacial Sugar Binding Site.
    Ojelabi OA; Lloyd KP; Simon AH; De Zutter JK; Carruthers A
    J Biol Chem; 2016 Dec; 291(52):26762-26772. PubMed ID: 27836974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of transmembrane segment 8 of the GLUT1 glucose transporter by cysteine-scanning mutagenesis and substituted cysteine accessibility.
    Mueckler M; Makepeace C
    J Biol Chem; 2004 Mar; 279(11):10494-9. PubMed ID: 14688257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of transmembrane segment 10 of the Glut1 glucose transporter by cysteine-scanning mutagenesis and substituted cysteine accessibility.
    Mueckler M; Makepeace C
    J Biol Chem; 2002 Feb; 277(5):3498-503. PubMed ID: 11713254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence determinants of GLUT1-mediated accelerated-exchange transport: analysis by homology-scanning mutagenesis.
    Vollers SS; Carruthers A
    J Biol Chem; 2012 Dec; 287(51):42533-44. PubMed ID: 23093404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Caffeine inhibits glucose transport by binding at the GLUT1 nucleotide-binding site.
    Sage JM; Cura AJ; Lloyd KP; Carruthers A
    Am J Physiol Cell Physiol; 2015 May; 308(10):C827-34. PubMed ID: 25715702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Dynamics Simulations of the Human Glucose Transporter GLUT1.
    Park MS
    PLoS One; 2015; 10(4):e0125361. PubMed ID: 25919356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconciling contradictory findings: Glucose transporter 1 (GLUT1) functions as an oligomer of allosteric, alternating access transporters.
    Lloyd KP; Ojelabi OA; De Zutter JK; Carruthers A
    J Biol Chem; 2017 Dec; 292(51):21035-21046. PubMed ID: 29066623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relative proximity and orientation of helices 4 and 8 of the GLUT1 glucose transporter.
    Alisio A; Mueckler M
    J Biol Chem; 2004 Jun; 279(25):26540-5. PubMed ID: 15073187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cysteine-scanning mutagenesis and substituted cysteine accessibility analysis of transmembrane segment 4 of the Glut1 glucose transporter.
    Mueckler M; Makepeace C
    J Biol Chem; 2005 Nov; 280(47):39562-8. PubMed ID: 16172126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmembrane segment 12 of the Glut1 glucose transporter is an outer helix and is not directly involved in the transport mechanism.
    Mueckler M; Makepeace C
    J Biol Chem; 2006 Dec; 281(48):36993-8. PubMed ID: 17020877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose transporter function is controlled by transporter oligomeric structure. A single, intramolecular disulfide promotes GLUT1 tetramerization.
    Zottola RJ; Cloherty EK; Coderre PE; Hansen A; Hebert DN; Carruthers A
    Biochemistry; 1995 Aug; 34(30):9734-47. PubMed ID: 7626644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endofacial competitive inhibition of the glucose transporter 1 activity by gossypol.
    Pérez A; Ojeda P; Valenzuela X; Ortega M; Sánchez C; Ojeda L; Castro M; Cárcamo JG; Rauch MC; Concha II; Rivas CI; Vera JC; Reyes AM
    Am J Physiol Cell Physiol; 2009 Jul; 297(1):C86-93. PubMed ID: 19386788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GLUT1 transmembrane glucose pathway. Affinity labeling with a transportable D-glucose diazirine.
    Lachaal M; Rampal AL; Lee W; Shi Y; Jung CY
    J Biol Chem; 1996 Mar; 271(9):5225-30. PubMed ID: 8617806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transmembrane segment 6 of the Glut1 glucose transporter is an outer helix and contains amino acid side chains essential for transport activity.
    Mueckler M; Makepeace C
    J Biol Chem; 2008 Apr; 283(17):11550-5. PubMed ID: 18245775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cysteine-scanning mutagenesis of transmembrane segment 7 of the GLUT1 glucose transporter.
    Hruz PW; Mueckler MM
    J Biol Chem; 1999 Dec; 274(51):36176-80. PubMed ID: 10593902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The red blood cell glucose transporter presents multiple, nucleotide-sensitive sugar exit sites.
    Cloherty EK; Levine KB; Carruthers A
    Biochemistry; 2001 Dec; 40(51):15549-61. PubMed ID: 11747430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.