BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

476 related articles for article (PubMed ID: 18982320)

  • 1. Anti-pointing is mediated by a perceptual bias of target location in left and right visual space.
    Heath M; Maraj A; Gradkowski A; Binsted G
    Exp Brain Res; 2009 Jan; 192(2):275-86. PubMed ID: 18982320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The antipointing task: vector inversion is supported by a perceptual estimate of visual space.
    Heath M; Maraj A; Maddigan M; Binsted G
    J Mot Behav; 2009 Oct; 41(5):383-92. PubMed ID: 19460747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hemispheric asymmetry in memory-guided pointing during single-pulse transcranial magnetic stimulation of human parietal cortex.
    Vesia M; Monteon JA; Sergio LE; Crawford JD
    J Neurophysiol; 2006 Dec; 96(6):3016-27. PubMed ID: 17005619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-line vs. off-line utilization of peripheral visual afferent information to ensure spatial accuracy of goal-directed movements.
    Bédard P; Proteau L
    Exp Brain Res; 2004 Sep; 158(1):75-85. PubMed ID: 15029468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Between-trial inhibition and facilitation in goal-directed aiming: manual and spatial asymmetries.
    Tremblay L; Welsh TN; Elliott D
    Exp Brain Res; 2005 Jan; 160(1):79-88. PubMed ID: 15316705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How active gaze informs the hand in sequential pointing movements.
    Wilmut K; Wann JP; Brown JH
    Exp Brain Res; 2006 Nov; 175(4):654-66. PubMed ID: 16794847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visuomotor transformations for reaching to memorized targets: a PET study.
    Lacquaniti F; Perani D; Guigon E; Bettinardi V; Carrozzo M; Grassi F; Rossetti Y; Fazio F
    Neuroimage; 1997 Feb; 5(2):129-46. PubMed ID: 9345543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multisensory interactions in saccade target selection: curved saccade trajectories.
    Doyle MC; Walker R
    Exp Brain Res; 2002 Jan; 142(1):116-30. PubMed ID: 11797089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of frontoparietal fMRI activation during anti-saccades and anti-pointing.
    Connolly JD; Goodale MA; DeSouza JF; Menon RS; Vilis T
    J Neurophysiol; 2000 Sep; 84(3):1645-55. PubMed ID: 10980034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viewer-centered frame of reference for pointing to memorized targets in three-dimensional space.
    McIntyre J; Stratta F; Lacquaniti F
    J Neurophysiol; 1997 Sep; 78(3):1601-18. PubMed ID: 9310446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Initial visual information determines endpoint precision for rapid pointing.
    Ma-Wyatt A; McKee SP
    Vision Res; 2006 Dec; 46(28):4675-83. PubMed ID: 17070889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different memory types for generating saccades at different stages of learning.
    Horaguchi T; Sugino K
    Neurosci Res; 2006 Jul; 55(3):271-84. PubMed ID: 16720055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Target frequency influences antisaccade endpoint bias: evidence for perceptual averaging.
    Gillen C; Heath M
    Vision Res; 2014 Dec; 105():151-8. PubMed ID: 25449162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orienting visuospatial attention generates manual reaction time asymmetries in target detection and pointing.
    Barthélémy S; Boulinguez P
    Behav Brain Res; 2002 Jun; 133(1):109-16. PubMed ID: 12048178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arm movement and gap as factors influencing the reaction time of the second saccade in a double-step task.
    Lünenburger L; Hoffmann KP
    Eur J Neurosci; 2003 Jun; 17(11):2481-91. PubMed ID: 12814381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distractor modulation of saccade trajectories: spatial separation and symmetry effects.
    McSorley E; Haggard P; Walker R
    Exp Brain Res; 2004 Apr; 155(3):320-33. PubMed ID: 14726987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual cortex activation in kinesthetic guidance of reaching.
    Darling WG; Seitz RJ; Peltier S; Tellmann L; Butler AJ
    Exp Brain Res; 2007 Jun; 179(4):607-19. PubMed ID: 17171536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. No evidence of a lower visual field specialization for visuomotor control.
    Binsted G; Heath M
    Exp Brain Res; 2005 Mar; 162(1):89-94. PubMed ID: 15517212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gaze influences finger movement-related and visual-related activation across the human brain.
    Bédard P; Thangavel A; Sanes JN
    Exp Brain Res; 2008 Jun; 188(1):63-75. PubMed ID: 18350284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visuomotor mental rotation: reaction time is not a function of the angle of rotation.
    Neely KA; Heath M
    Neurosci Lett; 2009 Oct; 463(3):194-8. PubMed ID: 19632298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.