BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 18982604)

  • 1. Human brain myelination from birth to 4.5 years.
    Aubert-Broche B; Fonov V; Leppert I; Pike GB; Collins DL
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):180-7. PubMed ID: 18982604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of normal myelination with magnetic resonance imaging.
    Welker KM; Patton A
    Semin Neurol; 2012 Feb; 32(1):15-28. PubMed ID: 22422203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maturation of white matter in the human brain: a review of magnetic resonance studies.
    Paus T; Collins DL; Evans AC; Leonard G; Pike B; Zijdenbos A
    Brain Res Bull; 2001 Feb; 54(3):255-66. PubMed ID: 11287130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying development: Investigating highly myelinated voxels in preadolescent corpus callosum.
    Whitaker KJ; Kolind SH; MacKay AL; Clark CM
    Neuroimage; 2008 Dec; 43(4):731-5. PubMed ID: 18718540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic segmentation of MR images of the developing newborn brain.
    Prastawa M; Gilmore JH; Lin W; Gerig G
    Med Image Anal; 2005 Oct; 9(5):457-66. PubMed ID: 16019252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Texture anisotropy of the brain's white matter as revealed by anatomical MRI.
    Kovalev V; Kruggel F
    IEEE Trans Med Imaging; 2007 May; 26(5):678-85. PubMed ID: 17518062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relaxo-volumetric multispectral quantitative magnetic resonance imaging of the brain over the human lifespan: global and regional aging patterns.
    Saito N; Sakai O; Ozonoff A; Jara H
    Magn Reson Imaging; 2009 Sep; 27(7):895-906. PubMed ID: 19520539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of myelination progression in subcortical white matter of children aged 6-48 months using T2-weighted imaging.
    Liu C; Jin C; Jian Z; Wang M; Li X; Liu H; Sun Q; Zeng L; Yang J
    Neuroradiology; 2018 Dec; 60(12):1343-1351. PubMed ID: 30302499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delayed myelination in children with developmental delay detected by volumetric MRI.
    Pujol J; López-Sala A; Sebastián-Gallés N; Deus J; Cardoner N; Soriano-Mas C; Moreno A; Sans A
    Neuroimage; 2004 Jun; 22(2):897-903. PubMed ID: 15193620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myelination progression in language-correlated regions in brain of normal children determined by quantitative MRI assessment.
    Su P; Kuan CC; Kaga K; Sano M; Mima K
    Int J Pediatr Otorhinolaryngol; 2008 Dec; 72(12):1751-63. PubMed ID: 18849083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative MRI for studying neonatal brain development.
    Sled JG; Nossin-Manor R
    Neuroradiology; 2013 Sep; 55 Suppl 2():97-104. PubMed ID: 23872867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global and local development of gray and white matter volume in normal children and adolescents.
    Wilke M; Krägeloh-Mann I; Holland SK
    Exp Brain Res; 2007 Apr; 178(3):296-307. PubMed ID: 17051378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of T(2)* heterogeneity in human brain white matter.
    Li TQ; Yao B; van Gelderen P; Merkle H; Dodd S; Talagala L; Koretsky AP; Duyn J
    Magn Reson Med; 2009 Dec; 62(6):1652-7. PubMed ID: 19859939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of classic spin echo and FLAIR sequences for the evaluation of myelination in MR imaging.
    Kizildağ B; Düşünceli E; Fitoz S; Erden I
    Diagn Interv Radiol; 2005 Sep; 11(3):130-6. PubMed ID: 16206052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of spin-echo T1- and T2-weighted and gradient-echo T1-weighted images at 3T in evaluating very preterm neonates at term-equivalent age.
    Sarikaya B; McKinney AM; Spilseth B; Truwit CL
    AJNR Am J Neuroradiol; 2013 May; 34(5):1098-103. PubMed ID: 23221947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep gray matter maturation in very preterm neonates: regional variations and pathology-related age-dependent changes in magnetization transfer ratio.
    Nossin-Manor R; Chung AD; Whyte HE; Shroff MM; Taylor MJ; Sled JG
    Radiology; 2012 May; 263(2):510-7. PubMed ID: 22416249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Normal myelination of anatomic nerve fiber bundles: MR analysis.
    Nakagawa H; Iwasaki S; Kichikawa K; Fukusumi A; Taoka T; Ohishi H; Uchida H
    AJNR Am J Neuroradiol; 1998; 19(6):1129-36. PubMed ID: 9672026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural MRI covariance patterns associated with normal aging and neuropsychological functioning.
    Brickman AM; Habeck C; Zarahn E; Flynn J; Stern Y
    Neurobiol Aging; 2007 Feb; 28(2):284-95. PubMed ID: 16469419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gaussian mixture model-based segmentation of MR images taken from premature infant brains.
    Merisaari H; Parkkola R; Alhoniemi E; Teräs M; Lehtonen L; Haataja L; Lapinleimu H; Nevalainen OS
    J Neurosci Methods; 2009 Aug; 182(1):110-22. PubMed ID: 19523488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MR imaging of the various stages of normal myelination during the first year of life.
    van der Knaap MS; Valk J
    Neuroradiology; 1990; 31(6):459-70. PubMed ID: 2352626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.