These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 18982604)

  • 21. Cerebral tissue water spin-spin relaxation times in human neonates at 2.4 tesla: methodology and the effects of maturation.
    Thornton JS; Amess PN; Penrice J; Chong WK; Wyatt JS; Ordidge RJ
    Magn Reson Imaging; 1999 Nov; 17(9):1289-95. PubMed ID: 10576714
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MRI study of brain myelination.
    Girard N; Raybaud C; du Lac P
    J Neuroradiol; 1991; 18(4):291-307. PubMed ID: 1804933
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MR imaging of the developing human brain. Part 2. Postnatal development.
    Ballesteros MC; Hansen PE; Soila K
    Radiographics; 1993 May; 13(3):611-22. PubMed ID: 8316668
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MR assessment of the brain maturation during the perinatal period: quantitative T2 MR study in premature newborns.
    Ferrie JC; Barantin L; Saliba E; Akoka S; Tranquart F; Sirinelli D; Pourcelot L
    Magn Reson Imaging; 1999 Nov; 17(9):1275-88. PubMed ID: 10576713
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative diffusion tensor tractography of association and projection fibers in normally developing children and adolescents.
    Eluvathingal TJ; Hasan KM; Kramer L; Fletcher JM; Ewing-Cobbs L
    Cereb Cortex; 2007 Dec; 17(12):2760-8. PubMed ID: 17307759
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Myelination of the pig's brain: a correlated MRI and histological study.
    Fang M; Li J; Gong X; Antonio G; Lee F; Kwong WH; Wai SM; Yew DT
    Neurosignals; 2005; 14(3):102-8. PubMed ID: 16088224
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative comparison of conventional spin echo and fast spin echo during brain myelination.
    Shaw DW; Weinberger E; Astley SJ; Tsuruda JS
    J Comput Assist Tomogr; 1997; 21(6):867-71. PubMed ID: 9386274
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multispectral quantitative MR imaging of the human brain: lifetime age-related effects.
    Watanabe M; Liao JH; Jara H; Sakai O
    Radiographics; 2013; 33(5):1305-19. PubMed ID: 24025926
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Age-dependent changes in magnetization transfer contrast of white matter in the pediatric brain.
    Engelbrecht V; Rassek M; Preiss S; Wald C; Mödder U
    AJNR Am J Neuroradiol; 1998; 19(10):1923-9. PubMed ID: 9874548
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Human brain atlas-based volumetry and relaxometry: application to healthy development and natural aging.
    Hasan KM; Walimuni IS; Kramer LA; Frye RE
    Magn Reson Med; 2010 Nov; 64(5):1382-9. PubMed ID: 20740662
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Normal myelination: a practical pictorial review.
    Branson HM
    Neuroimaging Clin N Am; 2013 May; 23(2):183-95. PubMed ID: 23608684
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regional growth trajectories of cortical myelination in adolescents and young adults: longitudinal validation and functional correlates.
    Kwon D; Pfefferbaum A; Sullivan EV; Pohl KM
    Brain Imaging Behav; 2020 Feb; 14(1):242-266. PubMed ID: 30406353
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessment of myelination in hypomyelinating disorders by quantitative MRI.
    Dreha-Kulaczewski SF; Brockmann K; Henneke M; Dechent P; Wilken B; Gärtner J; Helms G
    J Magn Reson Imaging; 2012 Dec; 36(6):1329-38. PubMed ID: 22911904
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Age-dynamic networks and functional correlation for early white matter myelination.
    Dai X; Müller HG; Wang JL; Deoni SCL
    Brain Struct Funct; 2019 Mar; 224(2):535-551. PubMed ID: 30392094
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Early myelination patterns in the central auditory pathway of the higher brain: MRI evaluation study.
    Sano M; Kuan CC; Kaga K; Itoh K; Ino K; Mima K
    Int J Pediatr Otorhinolaryngol; 2008 Oct; 72(10):1479-86. PubMed ID: 18676030
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neonate and infant brain development from birth to 2 years assessed using MRI-based quantitative susceptibility mapping.
    Zhang Y; Shi J; Wei H; Han V; Zhu WZ; Liu C
    Neuroimage; 2019 Jan; 185():349-360. PubMed ID: 30315906
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of myelinated and unmyelinated fibers of human vagus nerve during the first year of life.
    Pereyra PM; Zhang W; Schmidt M; Becker LE
    J Neurol Sci; 1992 Jul; 110(1-2):107-13. PubMed ID: 1506849
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of myelinated nerve fibers in the sixth cranial nerve of the rat: a quantitative electron microscope study.
    Hahn AF; Chang Y; Webster HD
    J Comp Neurol; 1987 Jun; 260(4):491-500. PubMed ID: 3611408
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T.
    Barkovich AJ; Kjos BO; Jackson DE; Norman D
    Radiology; 1988 Jan; 166(1 Pt 1):173-80. PubMed ID: 3336675
    [TBL] [Abstract][Full Text] [Related]  

  • 40. T2 at MR imaging is an objective quantitative measure of cerebral white matter signal intensity abnormality in preterm infants at term-equivalent age.
    Hagmann CF; De Vita E; Bainbridge A; Gunny R; Kapetanakis AB; Chong WK; Cady EB; Gadian DG; Robertson NJ
    Radiology; 2009 Jul; 252(1):209-17. PubMed ID: 19561257
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.