These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 18982619)

  • 1. Human vocal tract analysis by in vivo 3D MRI during phonation: a complete system for imaging, quantitative modeling, and speech synthesis.
    Wismueller A; Behrends J; Hoole P; Leinsinger GL; Reiser MF; Westesson PL
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):306-12. PubMed ID: 18982619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic 3-D visualization of vocal tract shaping during speech.
    Zhu Y; Kim YC; Proctor MI; Narayanan SS; Nayak KS
    IEEE Trans Med Imaging; 2013 May; 32(5):838-48. PubMed ID: 23204279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inter-speaker speech variability assessment using statistical deformable models from 3.0 tesla magnetic resonance images.
    Vasconcelos MJ; Ventura SM; Freitas DR; Tavares JM
    Proc Inst Mech Eng H; 2012 Mar; 226(3):185-96. PubMed ID: 22558833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-second MRI of a three-dimensional vocal tract to measure dynamic articulator modifications.
    Burdumy M; Traser L; Burk F; Richter B; Echternach M; Korvink JG; Hennig J; Zaitsev M
    J Magn Reson Imaging; 2017 Jul; 46(1):94-101. PubMed ID: 27943448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved imaging of lingual articulation using real-time multislice MRI.
    Kim YC; Proctor MI; Narayanan SS; Nayak KS
    J Magn Reson Imaging; 2012 Apr; 35(4):943-8. PubMed ID: 22127935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D dynamic MRI of the vocal tract during natural speech.
    Lim Y; Zhu Y; Lingala SG; Byrd D; Narayanan S; Nayak KS
    Magn Reson Med; 2019 Mar; 81(3):1511-1520. PubMed ID: 30390319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphologic differences in the vocal tract resonance cavities of voice professionals: an MRI-based study.
    Rua Ventura SM; Freitas DR; Ramos IM; Tavares JM
    J Voice; 2013 Mar; 27(2):132-40. PubMed ID: 23406840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Weight-bearing MR imaging as an option in the study of gravitational effects on the vocal tract of untrained subjects in singing phonation.
    Traser L; Burdumy M; Richter B; Vicari M; Echternach M
    PLoS One; 2014; 9(11):e112405. PubMed ID: 25379885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New laryngoscope for quantitative high-speed imaging of human vocal folds vibration in the horizontal and vertical direction.
    George NA; de Mul FF; Qiu Q; Rakhorst G; Schutte HK
    J Biomed Opt; 2008; 13(6):064024. PubMed ID: 19123670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional vocal tracts with three-dimensional behavior in the numerical generation of vowels.
    Arnela M; Guasch O
    J Acoust Soc Am; 2014 Jan; 135(1):369-79. PubMed ID: 24437777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using statistical deformable models to reconstruct vocal tract shape from magnetic resonance images.
    Vasconcelos MJ; Rua Ventura SM; Freitas DR; Tavares JM
    Proc Inst Mech Eng H; 2010 Oct; 224(10):1153-63. PubMed ID: 21138233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-frame-rate full-vocal-tract 3D dynamic speech imaging.
    Fu M; Barlaz MS; Holtrop JL; Perry JL; Kuehn DP; Shosted RK; Liang ZP; Sutton BP
    Magn Reson Med; 2017 Apr; 77(4):1619-1629. PubMed ID: 27099178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Fast Semiautomatic Algorithm for Centerline-Based Vocal Tract Segmentation.
    Poznyakovskiy AA; Mainka A; Platzek I; Mürbe D
    Biomed Res Int; 2015; 2015():906356. PubMed ID: 26557710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lower Vocal Tract Morphologic Adjustments Are Relevant for Voice Timbre in Singing.
    Mainka A; Poznyakovskiy A; Platzek I; Fleischer M; Sundberg J; Mürbe D
    PLoS One; 2015; 10(7):e0132241. PubMed ID: 26186691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vocal tract area function for vowels using three-dimensional magnetic resonance imaging. A preliminary study.
    Clément P; Hans S; Hartl DM; Maeda S; Vaissière J; Brasnu D
    J Voice; 2007 Sep; 21(5):522-30. PubMed ID: 16581228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of vocal tract morphology in speech development: perceptual targets and sensorimotor maps for synthesized French vowels from birth to adulthood.
    Ménard L; Schwartz JL; Boë LJ
    J Speech Lang Hear Res; 2004 Oct; 47(5):1059-80. PubMed ID: 15603462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [3D visualization and analysis of vocal fold dynamics].
    Bohr C; Döllinger M; Kniesburges S; Traxdorf M
    HNO; 2016 Apr; 64(4):254-61. PubMed ID: 26842549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of synthetic vowels based on a time-varying model of the vocal tract area function.
    Bunton K; Story BH
    J Acoust Soc Am; 2010 Apr; 127(4):EL146-52. PubMed ID: 20369982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vocal tract area functions from magnetic resonance imaging.
    Story BH; Titze IR; Hoffman EA
    J Acoust Soc Am; 1996 Jul; 100(1):537-54. PubMed ID: 8675847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [MRT sequences as a database for a visual articulatory model].
    Kröger BJ; Hoole P; Sader R; Geng C; Pompino-Marschall B; Neuschaefer-Rube C
    HNO; 2004 Sep; 52(9):837-43. PubMed ID: 15257394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.