These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 18982662)

  • 1. 3D dynamic roadmapping for abdominal catheterizations.
    Bender F; Groher M; Khamene A; Wein W; Heibel TH; Navab N
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):668-75. PubMed ID: 18982662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Guide wire reconstruction and visualization in 3DRA using monoplane fluoroscopic imaging.
    van Walsum T; Baert SA; Niessen WJ
    IEEE Trans Med Imaging; 2005 May; 24(5):612-23. PubMed ID: 15889549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Planning and intraoperative visualization of liver catheterizations: new CTA protocol and 2D-3D registration method.
    Groher M; Jakobs TF; Padoy N; Navab N
    Acad Radiol; 2007 Nov; 14(11):1325-40. PubMed ID: 17964457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Segmentation-driven 2D-3D registration for abdominal catheter interventions.
    Groher M; Bender F; Hoffmann RT; Navab N
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 2):527-35. PubMed ID: 18044609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model based 3D CS-catheter tracking from 2D X-ray projections: binary versus attenuation models.
    Haase C; Schäfer D; Dössel O; Grass M
    Comput Med Imaging Graph; 2014 Apr; 38(3):224-31. PubMed ID: 24444681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New CTA protocol and 2D-3D registration method for liver catheterization.
    Groher M; Padoy N; Jakobs TE; Navab N
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):873-81. PubMed ID: 17354973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Hidden Markov Model for 3D Catheter Tip Tracking With 2D X-ray Catheterization Sequence and 3D Rotational Angiography.
    Ambrosini P; Smal I; Ruijters D; Niessen WJ; Moelker A; Van Walsum T
    IEEE Trans Med Imaging; 2017 Mar; 36(3):757-768. PubMed ID: 27845655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal estimation of the 3d guide-wire position using 2d X-ray images.
    Brückner M; Deinzer F; Denzler J
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):386-93. PubMed ID: 20426011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional guide-wire reconstruction from biplane image sequences for integrated display in 3-D vasculature.
    Baert SA; van de Kraats EB; van Walsum T; Viergever MA; Niessen WJ
    IEEE Trans Med Imaging; 2003 Oct; 22(10):1252-8. PubMed ID: 14552579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous 3D-2D image registration and C-arm calibration: Application to endovascular image-guided interventions.
    Mitrović U; Pernuš F; Likar B; Špiclin Ž
    Med Phys; 2015 Nov; 42(11):6433-47. PubMed ID: 26520733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Respiratory motion compensation by model-based catheter tracking during EP procedures.
    Brost A; Liao R; Strobel N; Hornegger J
    Med Image Anal; 2010 Oct; 14(5):695-706. PubMed ID: 20579931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time 3D position reconstruction of guidewire for monoplane X-ray.
    Petković T; Homan R; Lončarić S
    Comput Med Imaging Graph; 2014 Apr; 38(3):211-23. PubMed ID: 24412393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Guide-wire tracking during endovascular interventions.
    Baert SA; Viergever MA; Niessen WJ
    IEEE Trans Med Imaging; 2003 Aug; 22(8):965-72. PubMed ID: 12906251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A machine learning approach for deformable guide-wire tracking in fluoroscopic sequences.
    Pauly O; Heibel H; Navab N
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):343-50. PubMed ID: 20879418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interventional 4D motion estimation and reconstruction of cardiac vasculature without motion periodicity assumption.
    Rohkohl C; Lauritsch G; Biller L; Prümmer M; Boese J; Hornegger J
    Med Image Anal; 2010 Oct; 14(5):687-94. PubMed ID: 20573539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-layer deformation estimation for fluoroscopic imaging.
    Preston S; Rottman C; Cheryauka A; Anderton L; Whitaker RT; Joshi S
    Inf Process Med Imaging; 2013; 23():123-34. PubMed ID: 24683963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Image-based respiratory motion compensation for fluoroscopic coronary roadmapping.
    Zhu Y; Tsin Y; Sundar H; Sauer F
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):287-94. PubMed ID: 20879411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interventional 4-D motion estimation and reconstruction of cardiac vasculature without motion periodicity assumption.
    Rohkohl C; Lauritsch G; Prümmer M; Hornegger J
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):132-9. PubMed ID: 20425980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rotational roadmapping: a new image-based navigation technique for the interventional room.
    Kukuk M; Napel S
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 2):636-43. PubMed ID: 18044622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interventional digital tomosynthesis from a standard fluoroscopy system using 2D-3D registration.
    Alhrishy M; Varnavas A; Carrell T; King A; Penney G
    Med Image Anal; 2015 Jan; 19(1):137-48. PubMed ID: 25461333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.