These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Assessment of perceptual quality for gaze-contingent motion stabilization in robotic assisted minimally invasive surgery. Mylonas GP; Stoyanov D; Darzi A; Yang GZ Med Image Comput Comput Assist Interv; 2007; 10(Pt 2):660-7. PubMed ID: 18044625 [TBL] [Abstract][Full Text] [Related]
5. Gaze-contingent control for minimally invasive robotic surgery. Mylonas GP; Darzi A; Yang GZ Comput Aided Surg; 2006 Sep; 11(5):256-66. PubMed ID: 17127651 [TBL] [Abstract][Full Text] [Related]
6. Gaze-contingent 3D control for focused energy ablation in robotic assisted surgery. Stoyanov D; Mylonas GP; Yang GZ Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):347-55. PubMed ID: 18982624 [TBL] [Abstract][Full Text] [Related]
7. i-BRUSH: a gaze-contingent virtual paintbrush for dense 3D reconstruction in robotic assisted surgery. Visentini-Scarzanella M; Mylonas GP; Stoyanov D; Yang GZ Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):353-60. PubMed ID: 20426007 [TBL] [Abstract][Full Text] [Related]
8. Master-slave robotic system for needle indentation and insertion. Shin J; Zhong Y; Gu C Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):100-105. PubMed ID: 28937302 [TBL] [Abstract][Full Text] [Related]
10. Design of a new haptic device and experiments in minimally invasive surgical robot. Wang T; Pan B; Fu Y; Wang S; Ai Y Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):240-250. PubMed ID: 29072504 [TBL] [Abstract][Full Text] [Related]
11. A probabilistic framework for tracking deformable soft tissue in minimally invasive surgery. Mountney P; Lo B; Thiemjarus S; Stoyanov D; Zhong-Yang G Med Image Comput Comput Assist Interv; 2007; 10(Pt 2):34-41. PubMed ID: 18044550 [TBL] [Abstract][Full Text] [Related]
13. A Transparent Teleoperated Robotic Surgical System with Predictive Haptic Feedback and Force Modelling. Batty T; Ehrampoosh A; Shirinzadeh B; Zhong Y; Smith J Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560138 [TBL] [Abstract][Full Text] [Related]
14. Soft tissue deformation tracking for robotic assisted minimally invasive surgery. Stoyanov D; Yang GZ Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():254-7. PubMed ID: 19964473 [TBL] [Abstract][Full Text] [Related]
15. Soft-tissue motion tracking and structure estimation for robotic assisted MIS procedures. Stoyanov D; Mylonas GP; Deligianni F; Darzi A; Yang GZ Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):139-46. PubMed ID: 16685953 [TBL] [Abstract][Full Text] [Related]
16. From medical images to minimally invasive intervention: Computer assistance for robotic surgery. Lee SL; Lerotic M; Vitiello V; Giannarou S; Kwok KW; Visentini-Scarzanella M; Yang GZ Comput Med Imaging Graph; 2010 Jan; 34(1):33-45. PubMed ID: 19699056 [TBL] [Abstract][Full Text] [Related]
17. Stereoscopic scene flow for robotic assisted minimally invasive surgery. Stoyanov D Med Image Comput Comput Assist Interv; 2012; 15(Pt 1):479-86. PubMed ID: 23285586 [TBL] [Abstract][Full Text] [Related]
18. Shared control of a medical robot with haptic guidance. Xiong L; Chng CB; Chui CK; Yu P; Li Y Int J Comput Assist Radiol Surg; 2017 Jan; 12(1):137-147. PubMed ID: 27314590 [TBL] [Abstract][Full Text] [Related]
20. The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: a current review. van der Meijden OA; Schijven MP Surg Endosc; 2009 Jun; 23(6):1180-90. PubMed ID: 19118414 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]