BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 18982673)

  • 1. Modelling mammographic compression of the breast.
    Chung JH; Rajagopal V; Nielsen PM; Nash MP
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):758-65. PubMed ID: 18982673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Breast lesion co-localisation between X-ray and MR images using finite element modelling.
    Lee AW; Rajagopal V; Babarenda Gamage TP; Doyle AJ; Nielsen PM; Nash MP
    Med Image Anal; 2013 Dec; 17(8):1256-64. PubMed ID: 23860392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards tracking breast cancer across medical images using subject-specific biomechanical models.
    Rajagopal V; Lee A; Chung JH; Warren R; Highnam RP; Nielsen PM; Nash MP
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):651-8. PubMed ID: 18051114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical 3-D finite element modeling of the human breast using MRI data.
    Samani A; Bishop J; Yaffe MJ; Plewes DB
    IEEE Trans Med Imaging; 2001 Apr; 20(4):271-9. PubMed ID: 11370894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational simulation of breast compression based on segmented breast and fibroglandular tissues on magnetic resonance images.
    Shih TC; Chen JH; Liu D; Nie K; Sun L; Lin M; Chang D; Nalcioglu O; Su MY
    Phys Med Biol; 2010 Jul; 55(14):4153-68. PubMed ID: 20601773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A biomechanical breast model evaluated with respect to MRI data collected in three different positions.
    Mîra A; Carton AK; Muller S; Payan Y
    Clin Biomech (Bristol, Avon); 2018 Dec; 60():191-199. PubMed ID: 30408760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A nonlinear biomechanical model based registration method for aligning prone and supine MR breast images.
    Han L; Hipwell JH; Eiben B; Barratt D; Modat M; Ourselin S; Hawkes DJ
    IEEE Trans Med Imaging; 2014 Mar; 33(3):682-94. PubMed ID: 24595342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Material properties estimation of layered soft tissue based on MR observation and iterative FE simulation.
    Tada M; Nagai N; Maeno T
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):633-40. PubMed ID: 16686013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modality independent elastography (MIE): a new approach to elasticity imaging.
    Washington CW; Miga MI
    IEEE Trans Med Imaging; 2004 Sep; 23(9):1117-28. PubMed ID: 15377121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frictional contact mechanics methods for soft materials: application to tracking breast cancers.
    Chung JH; Rajagopal V; Laursen TA; Nielsen PM; Nash MP
    J Biomech; 2008; 41(1):69-77. PubMed ID: 17727862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A numerical investigation of breast compression: a computer-aided design approach for prescribing boundary conditions.
    Stewart ML; Smith LM; Hall N
    IEEE Trans Biomed Eng; 2011 Oct; 58(10):2876-84. PubMed ID: 21768039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite-element modeling of compression and gravity on a population of breast phantoms for multimodality imaging simulation.
    Sturgeon GM; Kiarashi N; Lo JY; Samei E; Segars WP
    Med Phys; 2016 May; 43(5):2207. PubMed ID: 27147333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MRI skin segmentation for the virtual deformation of the breast under mammographic compression.
    Solves Llorens JA; Monserrat C; Rupérez MJ; Naranjo V; Alajami M; Feliu E; García M; Lloret M
    Stud Health Technol Inform; 2012; 173():483-9. PubMed ID: 22357041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of mechanical compression of breast tissue.
    Kellner AL; Nelson TR; Cerviño LI; Boone JM
    IEEE Trans Biomed Eng; 2007 Oct; 54(10):1885-91. PubMed ID: 17926687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Passive ventricular mechanics modelling using MRI of structure and function.
    Wang VY; Lam HI; Ennis DB; Young AA; Nash MP
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):814-21. PubMed ID: 18982680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of patient-specific biomechanical models for predicting large breast deformation.
    Han L; Hipwell JH; Tanner C; Taylor Z; Mertzanidou T; Cardoso J; Ourselin S; Hawkes DJ
    Phys Med Biol; 2012 Jan; 57(2):455-72. PubMed ID: 22173131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Creating individual-specific biomechanical models of the breast for medical image analysis.
    Rajagopal V; Lee A; Chung JH; Warren R; Highnam RP; Nash MP; Nielsen PM
    Acad Radiol; 2008 Nov; 15(11):1425-36. PubMed ID: 18995193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A complete software application for automatic registration of x-ray mammography and magnetic resonance images.
    Solves-Llorens JA; Rupérez MJ; Monserrat C; Feliu E; García M; Lloret M
    Med Phys; 2014 Aug; 41(8):081903. PubMed ID: 25086534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of mammographic breast compression in 3D MR images using ICP-based B-spline deformation for multimodality breast cancer diagnosis.
    Krüger J; Ehrhardt J; Bischof A; Handels H
    Int J Comput Assist Radiol Surg; 2014 May; 9(3):367-77. PubMed ID: 24430800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mammogram registration: a phantom-based evaluation of compressed breast thickness variation effects.
    Richard FJ; Bakić PR; Maidment AD
    IEEE Trans Med Imaging; 2006 Feb; 25(2):188-97. PubMed ID: 16468453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.