BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

507 related articles for article (PubMed ID: 18982996)

  • 1. Arsenic pollution sources.
    Garelick H; Jones H; Dybowska A; Valsami-Jones E
    Rev Environ Contam Toxicol; 2008; 197():17-60. PubMed ID: 18982996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geochemical and mineralogical characterization of a neutral, low-sulfide/high-carbonate tailings impoundment, Markušovce, eastern Slovakia.
    Hiller E; Petrák M; Tóth R; Lalinská-Voleková B; Jurkovič L; Kučerová G; Radková A; Sottník P; Vozár J
    Environ Sci Pollut Res Int; 2013 Nov; 20(11):7627-42. PubMed ID: 23436124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mobilisation and bioavailability of arsenic around mesothermal gold deposits in a semiarid environment, Otago, New Zealand.
    Craw D; Pacheco L
    ScientificWorldJournal; 2002 Feb; 2():308-19. PubMed ID: 12806018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogeochemistry of arsenic pollution in watersheds influenced by gold mining activities in Paracatu (Minas Gerais State, Brazil).
    Bidone E; Castilhos Z; Cesar R; Santos MC; Sierpe R; Ferreira M
    Environ Sci Pollut Res Int; 2016 May; 23(9):8546-55. PubMed ID: 26797944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Case reports: arsenic pollution in Thailand, Bangladesh, and Hungary.
    Jones H; Visoottiviseth P; Bux MK; Födényi R; Kováts N; Borbély G; Galbács Z
    Rev Environ Contam Toxicol; 2008; 197():163-87. PubMed ID: 18983000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic in a groundwater environment in Bangladesh: Occurrence and mobilization.
    Huq ME; Fahad S; Shao Z; Sarven MS; Khan IA; Alam M; Saeed M; Ullah H; Adnan M; Saud S; Cheng Q; Ali S; Wahid F; Zamin M; Raza MA; Saeed B; Riaz M; Khan WU
    J Environ Manage; 2020 May; 262():110318. PubMed ID: 32250801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic in the geo-environment: A review of sources, geochemical processes, toxicity and removal technologies.
    Raju NJ
    Environ Res; 2022 Jan; 203():111782. PubMed ID: 34343549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenic speciation and bioaccessibility in arsenic-contaminated soils: sequential extraction and mineralogical investigation.
    Kim EJ; Yoo JC; Baek K
    Environ Pollut; 2014 Mar; 186():29-35. PubMed ID: 24361561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thioarsenate formation upon dissolution of orpiment and arsenopyrite.
    Suess E; Planer-Friedrich B
    Chemosphere; 2012 Nov; 89(11):1390-8. PubMed ID: 22771176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Source identification of arsenic contamination in agricultural soils surrounding a closed Cu smelter, South Korea.
    Lee PK; Yu S; Jeong YJ; Seo J; Choi SG; Yoon BY
    Chemosphere; 2019 Feb; 217():183-194. PubMed ID: 30419376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic in groundwaters in the Northern Appalachian Mountain belt: a review of patterns and processes.
    Peters SC
    J Contam Hydrol; 2008 Jul; 99(1-4):8-21. PubMed ID: 18571283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated approach to assess the environmental impact of mining activities: estimation of the spatial distribution of soil contamination (Panasqueira mining area, Central Portugal).
    Candeias C; Ávila PF; Ferreira da Silva E; Teixeira JP
    Environ Monit Assess; 2015 Mar; 187(3):135. PubMed ID: 25702148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential anthropogenic mobilisation of mercury and arsenic from soils on mineralised rocks, Northland, New Zealand.
    Craw D
    J Environ Manage; 2005 Feb; 74(3):283-92. PubMed ID: 15644268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of mining activities on evolution of water quality of karst waters in Midwestern Guizhou, China: evidences from hydrochemistry and isotopic composition.
    Li X; Wu P; Han Z; Zha X; Ye H; Qin Y
    Environ Sci Pollut Res Int; 2018 Jan; 25(2):1220-1230. PubMed ID: 29082473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic species formed from arsenopyrite weathering along a contamination gradient in Circumneutral river floodplain soils.
    Mandaliev PN; Mikutta C; Barmettler K; Kotsev T; Kretzschmar R
    Environ Sci Technol; 2014; 48(1):208-17. PubMed ID: 24283255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seven potential sources of arsenic pollution in Latin America and their environmental and health impacts.
    Bundschuh J; Schneider J; Alam MA; Niazi NK; Herath I; Parvez F; Tomaszewska B; Guilherme LRG; Maity JP; López DL; Cirelli AF; Pérez-Carrera A; Morales-Simfors N; Alarcón-Herrera MT; Baisch P; Mohan D; Mukherjee A
    Sci Total Environ; 2021 Aug; 780():146274. PubMed ID: 34030289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sources, pathways, and relative risks of contaminants in surface water and groundwater: a perspective prepared for the Walkerton inquiry.
    Ritter L; Solomon K; Sibley P; Hall K; Keen P; Mattu G; Linton B
    J Toxicol Environ Health A; 2002 Jan; 65(1):1-142. PubMed ID: 11809004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic and fluoride in the groundwater of Mexico.
    Armienta MA; Segovia N
    Environ Geochem Health; 2008 Aug; 30(4):345-53. PubMed ID: 18335171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ferric minerals and organic matter change arsenic speciation in copper mine tailings.
    Wang P; Liu Y; Menzies NW; Wehr JB; de Jonge MD; Howard DL; Kopittke PM; Huang L
    Environ Pollut; 2016 Nov; 218():835-843. PubMed ID: 27524252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of arsenic and boron on the water quality index in mining stressed catchments of Emet and Orhaneli streams (Turkey).
    Omwene PI; Öncel MS; Çelen M; Kobya M
    Environ Monit Assess; 2019 Mar; 191(4):199. PubMed ID: 30824983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.